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ABSTRACT
We devise a simple, provably effective, and readily usable deterrence

against intelligent, unknown DDoS threats: Demotivate adversaries

to launch attacks via multi-hop traffic divergence. This new strategy

is motivated by the fact that existing defenses almost always lag

behind numerous emerging DDoS threats and evolving intelligent

attack strategies. The root cause is if adversaries are smart and

adaptive, no single-hop defenses (including optimal ones) can per-

fectly differentiate unknown DDoS and legitimate traffic. Instead,

we formulate intelligent DDoS as a game between attackers and

defenders, and prove how multi-hop traffic divergence helps bypass

this dilemma by reversing the asymmetry between attackers and de-

fenders. This insight results in EID, an Economical Intelligent DDoS
Demotivation protocol. EID combines local weak (yet divergent)

filters to provably null attack gains without knowing exploited vul-

nerabilities or attack strategies. It incentivizes multi-hop defenders

to cooperate with boosted local service availability. EID is resilient

to traffic dynamics and manipulations. It is readily deployable with

random-drop filters in real networks today. Our experiments over

a 49.8 TB dataset from a department at Tsinghua campus network

validate EID’s viability against rational and irrational DDoS with

negligible costs.
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ics of security and privacy; • Theory of computation → Al-
gorithmic game theory and mechanism design.
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1 INTRODUCTION
Can we fight against network attacks that we do not know? Network
security is fundamentally asymmetric warfare between attackers

and defenders: The evolution of security defenses almost always lag

behind the emergence of numerous new threats and fast-evolving

attack strategies. It is usually too late to come up with remedies

before new threats have already caused negative impacts [1, 2].

This long-standing phenomenon is exacerbated by recent advances

in adversarial machine learning, which empowers criminals to

automatically discover more unknown vulnerabilities and refine

their attack strategies. Thus, it is open to question if defenders still

have decent chances to win this race against intelligent attackers.

This paper studies this question in one of the most serious threats

to the Internet: Distributed Denial of Services (DDoS). In DDoS

attacks, adversaries disrupt victims’ service by exhausting their

network resources with compromised robot networks (botnets). In

the past decades, we have seen numerous DDoS to many institutes

such as Google [3], GitHub [4] and Amazon [5] with more than 1

Tbps malicious traffic [6–8] and huge financial loss [9].

As a result, DDoS is probably one of the most studied topics in

network security. Numerous DDoS defenses have been proposed,

spanning on ingress filtering [10–13], source validation [14, 15],

anomaly detection [16–18], anycast [19, 20], traceback [21, 22], In-

ternet architecture change [23–26], and many more. As for commer-

cial products, huge scrubbing centers have been widely deployed

[6, 27, 28] to absorb global DDoS traffic. Despite these extensive

excellent efforts, however, the frequency and intensity of DDoS still

continue to grow without signs of stoping.

We note that, DDoS is fundamentally hard to eliminate because

attackers and defenders are asymmetric in at least three aspects:

(1) Massive attack sources: It is much easier to gain attack ca-

pacity than defense capacity. Attackers can hijack numerous

bots (e.g., vulnerable IoT devices [29]) to form huge botnets

at low costs. Instead, the defense capacity is usually expen-

sive, e.g., $150,000/year for ≤600Gbps DDoS scrubbing [30].

(2) Numerous unknown threats: The attack surface is always
larger than defense coverage. From various emergent pro-

tocols and applications, attackers can easily discover and

exploit new vulnerabilities that defenders do not recognize.

(3) Evolving intelligent attack strategies: Disguising DDoS

is always easier than detecting it. With the recent advances

in generative adversarial learning [31–33] and layer 7 attacks

[34, 35], smart attackers can easily imitate legitimate usage

behaviors to bypass or defeat defenders.

As we will prove in §3, these asymmetries ensure strategic attackers

can always benefit from DDoS even under optimal intelligent de-

fenses. The root cause is that, from generative adversarial learning’s

view, the strategically mimicked DDoS traffic is indistinguishable
from legitimate traffic. Such indistinguishability is exacerbated by
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Figure 1: An example of threat model in intelligent DDoS.

numerous unknown threats and traffic dynamics (as “noises”) and

is unlikely to be resolved by the aforementioned existing solutions.

To this end, we believe the ultimate mitigation of intelligent

DDoS should not just passively defend it after it occurs. Instead,

defenders should also seek to proactively prevent attackers from

launching DDoS in the first place, which is possible when the attack

costs exceed gains. This strategic deterrence complements existing

passive defenses. It bypasses the above asymmetries with a more

economical, affordable solution against intelligent, unknown DDoS.

In this work, we formulate intelligent unknown DDoS as an

evolutionary game between attackers and defenders, and devise

strategic deterrence against DDoS by nulling attackers’ benefit-cost

ratio. Our key observation is that, multi-hop traffic divergence offers
a natural mechanism to reverse the attacker-defender asymmetry in
this DDoS game. In real distributed networks, traffic distributions

from different nodes are naturally divergent due to heterogeneous

user behaviors and network capabilities. Suppose multi-hops on the

path enable smart filters (inspired by GAN [32], detailed in §5.2).

In that case, they can collaboratively force the strategic attacker

to face the dilemma of whose traffic to mimic (Figure 3). Imitating

one hop’s legitimate traffic leads to significant deviance from other

hops’ traffic, thus lowering the success of passing all nodes’ DDoS

filters. As we will see in §5, this gaming mechanism provably nulls

attackers’ gains without prior knowledge of new threats or attack

strategies, and yields a win-win situation between defenders. It

is resilient to malicious manipulations and traffic dynamics, and

readily deployable with random-drop filters in real networks.

Following this insight, this paper makes three contributions:

(I) We formulate intelligent DDoS in reality as a game between

attackers and defenders (§2), derive optimal single-hop filters

via generative adversary nets (GAN), and prove the legitimacy-

DDoS indistinguishability even for optimal filters (§3). This

motivates us to go beyond existing single-hop DDoS defenses;

(II) We devise EID, a distributed Economical Intelligent DDoS
Demotivation protocol (§4–5). EID formulates multi-hop traf-

fic divergence as an extension of f -divergence in statistics

[36]. Based on traffic divergence, EID recursively combines

weak (yet divergent) local filters from multi-hop defenders to

form a strong global DDoS demotivation. This meta-policy

provably nulls DDoS attackers’ benefit-cost ratio, and offers

built-in incentives for multi-hop defenders to contribute. EID

supports scalable on-demand demotivation via composable

filters and hop pruning. It is incrementally deployable with

random-drop filters in commodity hosts and routers.

Table 1: Notations and definitions.
Notation Definition
k Network traffic type index: k = 1, 2, ...K
µn, µa Network capacity at a legitimate network node (hop) n and attacker

pa, pn DDoS and hop n’s traffic distribution: pn = (µn,p1n, ...pkn , ...), pa =
(µa,p

1

a, ...p
k
a , ...),

∑
k p

k
n = 1,

∑
k p

k
a = 1

qn Equivalent legitimate traffic distribution from hop 1 to n
dn,d(p1, p2, ...pn)Multi-hop traffic divergence between distribution p1, p2, ...pn
D1,n (k) Hop n’s local DDoS filter for traffic type k : D1,n (k) ∈ [0, 1]
Dn (k) Accumulative filter from hop 1 to n: Dn (k) = Dn−1(k)D1,n (k)
U (pa,D) Adversary’s attack gain under DDoS strategy pa and defenses D
η(pa,D) Adversary’s benefit-cost ratio: η(pa,D) = U (pa,D)/µa
Vn (pa,D) GAN-inspired utility in n for DDoS-legitimacy differentiation

okn The observable total traffic volume of packet type k at hop n
ck Bandwidth amplification factor for protocol/application k

(III) We prototype EID in the PA-7050 firewall (§6) and evaluate

it with a 49.8 TB real dataset from a department at Tsinghua

campus network. Without knowing attack strategies or ex-

ploited threats, EID demotivates both real and optimal DDoS

attacks with < 1 benefit-cost ratio for rational adversaries,
and retains ≥99.9% (≥84.7%) legitimate service availability

under irrational real (optimal) DDoS attacks with negligible

network and system costs (§7).

While EID currently focuses on DDoS, we believe its core ideas can

be extended to broader intelligent network attacks.

2 THREAT MODEL:
INTELLIGENT DDOS AS A GAME

This paper studies intelligent DDoS, in which both attackers and

defenders are smart and strategic. The defenders seek to accurately

detect and block attackers’ DDoS traffic. The attackers aim to bypass

defenders’ protections by exploiting new threats to defenders, and

mimicking legitimate usage behaviors. Attackers and defenders

mutually impact each other and iteratively refine their strategies

to maximize their own merits. This forms an evolutionary game

[37, 38] between attackers and defenders that is consistent with

most DDoS in reality [6–8]. Figure 1 illustrates the threat model

and Table §1 summarizes its notations.

Attack model: We consider a strong attacker that forms a mas-

sive botnet to exhaust the victims
1
. The attacker can systematically

monitor victims’ usage behaviors, discover new vulnerabilities, and

refine its strategy to bypass defenses by exploiting new threats

and mimicking legitimate network behaviors (e.g., via generative

adversary learning [32, 33]). It has various options to craft attack

traffic, including choosing attack protocols, packet header fields or

payloads (Figure 4). To combat smart defenders, it can also exploit

multiple vulnerabilities, and distribute its traffic among diverse

protocols and applications (i.e., mixed DDoS attacks [39, 40]). The
attacker aims for successful DDoS. Its benefits beyond successful

attacks (e.g., extorting victims via unsuccessful attacks) are out of
this paper’s scope, although our core idea of deterrence still holds

and is generally extensible to these scenarios as discussed in §8.

To tackle unknown DDoS threats, our model does not assume

specific attack methodologies or exploited vulnerabilities. Instead,

we focus on the attacks’ benefit-cost ratio, which motivates most

real adversaries’ decisions in the cybercrime economy [41–43]. For

example, a large-scale study from [8] shows global DDoS becomes

less frequent when Bitcoin price increases, because more attackers

1
In this paper, we use “attackers”, “adversaries”, and ”criminals” interchangeably. We

also use “defenders”, ”victims”, and “hops” interchangeably.



will utilize their botnets to mine Bitcoins rather than run DDoS. The

recent rise of “DDoS-as-a-Service” [44–46] on the darknet market

also renders the importance of the benefit-cost ratio for criminals.

We next formalize the adversary’s benefit-cost ratio. As attacks’

“benefits” and “costs” can be diverse in reality, we aim for generic

and extensible definitions of benefit-cost ratio. On the benefit side,

both attack and defense strategies affect the adversary’s gains. The

adversary gains more if more DDoS traffic reaches victims, and

gains zero if defenders block all DDoS traffic [34, 35, 47–50]. Let

pa = (µa,p1a, ...,pka , ...) be the adversary’s DDoS traffic distribution

(attack strategy), with µa as its total attack capacity and pka as

the probability of traffic type k = 1, 2....,K in this DDoS attack

portfolio
2
. So µap

k
a is DDoS traffic k’s portion. Meanwhile, DDoS

traffic can be blocked by defenders’ filters D = (D(1), ...D(k), ...),
with D(k) ∈ [0, 1] as defenders’ probability of forwarding traffic k .
We assume the attack gainU (pa,D) ≥ 0 satisfies:

(i) More DDoS, more gains:U (pa,D) increases monotonically with

DDoS traffic that reaches victim µap
k
aD(k) for each type k3;

(ii) No DDoS, no gains:U (pa,D) = 0 if µap
k
aD(k) = 0,∀k .

On the cost side, the adversary should employ massive attack

capacity (µa ) for successful DDoS. Such attack capacity is not free

(though usually cheap): The adversary should spend efforts hijack-

ing large botnets, rent botnets from DarkNet [41–43], or purchase

the DDoS service [44–46]. To this end, we formulate the costs as

attack capacity µa consumed to initiate DDoS, which can be em-

ployed from botnets, open resolvers, self-purchased hosts, or others.

So its benefit-cost ratio η quantifies how much attack capacity it

should pay for the targeted DDoS gains:

η(pa,D) ≜
U (pa,D)

µa
(1)

As a concrete instance, in the amplification DDoS attack (which

contributes more than 80% large DDoS with >1 Tbps attack capacity

today [6–8]), the benefit-cost ratio η equals the bandwidth amplifi-

cation factor [47, 48, 51, 52], a well-known metric to quantify the

usefulness of this attack (detailed in §5.4). We assume an adversary

is more motivated to run DDoS with higher benefit-cost ratio η.
Defense model: In a network, both the end hosts and network

nodes on the path are victims and suffer from DDoS attacks. They

seek to maximize their network service availability with minimal

costs by strategically refining their defenses against DDoS. Their

local network service availability (utility) is defined as the percent-

age of successfully forwarded legitimate traffic under DDoS attacks.

We will derive and explain its formulation in §3.1 (Equation 3).

Victims can be threatened by unknown attacks, i.e., they do not

know adversaries’ attack strategies, malicious traffic distribution,

or exploited vulnerabilities. Each node on the path only knows its

legitimate local traffic distributions (via standard traffic monitoring

or offline profiling) and systematically monitors its runtime local

traffic (which aggregates legitimate and DDoS traffic). Our model

allows for nodes from multiple paths. We assume they are willing

2
Our threat model supports flexible traffic classification granularities k = 1, 2, ...K
(depending on attack strategies). For example, k can indicate the protocols to exploit

(DNS, NTP, ICMP, etc), different variants of vulnerabilities in each protocol (e.g.,

exploiting open resolvers or authoritative name servers in DNS-based DDoS [47]), or

application-layer content types. We support all of them with seamless tradeoff (§5.3).
3
Besides DDoS traffic, it is also possible to extend attackers’ utility to consider mistak-

enly dropped legitimate traffic inU (pa, D) as we will see in §8.

Algorithm 1 Optimal single-hop DDoS filter inspired by GAN.

Input: Runtime traffic rate {okn }k and configurable maximal load threshold {µkn = µnpkn }k for

each traffic type k
1: for each packet belonging to traffic type k do
2: if okn ≤ µkn then Forward the packet; ▷ Underloaded: Forward all traffic.

3: else then Forward the packet with probability µkn /o
k
n ; ▷ Overloaded: Stateless random drop.

4: end for

to cooperate if beneficial to themselves [24, 53]. They use readily

available mechanisms to mitigate DDoS, without requiring sophis-

ticated software/hardware modifications. We explore a simple and

popular mechanism in almost all commodity network nodes: ran-

dom packet drop. Despite its simplicity, this mechanism suffices to

provably void attack gains under intelligent and unknown DDoS,

with negligible impacts on legitimate traffic (§5).

Interplay between attackers and defenders: For their own

merits, both attackers and defenders iteratively refine their strate-

gies based on the other’s behaviors. To understand their mutual

impacts, we study their Nash Equilibrium, during which neither can

further improve their benefits if the other’s strategy remains un-

changed. Note our model does not assume both players are entirely

rational or perfect; they may make mistakes or adopt imperfect

strategies (e.g., due to incomplete information). Instead, the Nash

Equilibrium sheds light on the stable state as smart attackers and

defenders evolve. As we will see in §5.2, minimizing the maximal

benefit-cost ratio for adversaries in this Nash Equilibrium offers a

practical path to demotivate intelligent, unknown DDoS.

3 WHY IS INTELLIGENT DDOS HARD TO
ELIMINATE?

DDoS is a decades-old security threat to the Internet. The challenges

for eliminating DDoS have been extensively discussed and validated

from network architecture and system mechanism perspectives

(§9). This section complements them with an orthogonal view from

evolutionary gaming and generative adversarial learning policies

[32, 33, 54]. We investigate how intelligent attackers and defenders

interact and evolve for their own merits (§3.1), and derive their

stable gains at Nash Equilibrium (§3.2). We prove that, due to the

asymmetric nature in §1, any single defender’s optimal mitigation

cannot eliminate smart adversaries’ gains from intelligent DDoS.

3.1 A Single Defender’s Optimal Filters
We start from a single defender’s perspective to explore the opti-

mal DDoS defenses. As introduced in §2, a smart adversary may

exploit new threats and carefully-crafted DDoS traffic to mimic

legitimate behaviors and bypass the defenses adaptively. Moreover,

the “legitimacy” of network traffic sometimes depends on the envi-

ronment and context, especially for layer-7 DDoS attacks [34, 35].

Both make the static defenses (e.g., rule-based filters) ineffective

against unknown DDoS vulnerabilities.

To combat unknown DDoS attacks, a defender’s most viable

choice so far is to adopt probabilistic filters to block DDoS traffic

with minimal hurt for legitimate traffic. For maximal legitimate

network availability with low cost, the defender should adopt filters

that are accurate to maximize the differentiation between legitimate

and DDoS traffic, efficient to process traffic with marginal overhead,

and readily deployable today with minimal changes (if possible).



To this end, we devise the optimal DDoS filters that can be

realized in commodity network nodes, and prove its optimality

from the generative adversarial network (GAN) perspective. In the

classical GAN model [32, 33, 54], the generator (adversary) and

discriminator (defender) contest with each other in a game. The

generator is trained to fool the discriminator, during which the

discriminator is also updated dynamically. At the equilibrium, the

discriminator cannot differentiate legitimate and generated data. In

our context, consider a defender n with legitimate traffic distribu-

tion pn = (µn,p1n, ...,pkn , ...), where µn > 0 is defender’s maximal

network capacity and pkn is the probability that its legitimate traffic

belongs to type k (i.e., the maximal legitimate traffic rate belonging

to k is µnp
k
n ). As explained in §2, we assume the defender knows

its legitimate traffic distribution pn as prior knowledge. Without

DDoS, the legitimate traffic rate on will not exceed the capacity µn .
Now consider a DDoS attack with malicious traffic distribution

pa = (µa,p1a, ...,pka , ...). In this case, the runtime traffic would be a

sum of legitimate andDDoS traffic:okn = µnp
k
n+µap

k
a ,∀k . To disrupt

the defender’s service, this DDoS aims to exhaust its capacity on >
µn . Then the defender has to drop (or delay the processing of) some

packets. To this end, we propose a simple random drop filter:

D∗
1,n (k) ≜ min

(
1,

µnp
k
n

okn

)
(2)

Without DDoS, the runtime traffic okn ≤ µnp
k
n so D∗n (k) = 1, i.e., no

packets are dropped. Otherwise, okn = µnp
k
n + µap

k
a and therefore

D∗
1,n (k) =

µnp
k
n

µnp
k
n + µap

k
a

(3)

Algorithm 1 illustrates the filter’s random drop policy. At runtime,

an overloaded node n randomly drops packets of traffic type k with

probability 1 − D1,n (k). In this way, the filter guarantees the total

traffic is always no more than µkn = µnp
k
n . The filter is efficient

since it simply randomly drop packets, without complex per-packet

processing or maintaining any states in the host. It is also readily de-

ployable since random-drop policy has been an de facto mechanism

in commodity hosts, routers, and firewalls (§6).

We next prove that, from GAN’s perspective, this filter also max-

imizes the discrimination between legitimate and DDoS traffic, thus

facilitating high network service availability. For readers unfamil-

iar with GAN, we recommend them to read [32] for a high-level

review and its widespread influence on machine learning security

(e.g., Deepfake [55]). In our context, the adversary crafts its DDoS

traffic to bypass defender’s filters, while the defender seeks to max-

imize the differentiation between legitimate traffic pn and DDoS

pa. To this end, GAN suggests the defender to train its filter D1,n
to maximize the following divergence variance function [32, 54]:

Vn (pa,D) ≜ µnEk∼pn logD1,n (k) + µaEk∼pa log(1 − D1,n (k))

If Vn (pa,D) is maximized, the “distance” between pn and pa (a

variant of f -divergence in statistics [54], detailed in §5.1) is also

provably maximized in GAN, thus helping defenders accurately

detect and drop DDoS traffic with minimal hurt for legitimate traffic.

The following result confirms our filters indeed achieve so:

Theorem 1 (Optimal single-hop filter). Under DDoS attack pa, each
hop n maximizes Vn (pa,D) with the filter D∗1,nin Equation 2.

Optimal local 
filters (§3.1)

Optimal local 
filters (§3.1)

Multi-hop traffic 
divergence (§5.1)

Recursive combination 
of divergent filters (§5.2)

Scalable, on-demand 
demotivation (§5.3)

…

Figure 2: Overview of EID.
Theorem 1 is proved in Appendix A and is a variant of Propo-

sition 1 in the original GAN paper [32]. It shows that Equation 2

is the best random-drop filter the defender can adopt to combat

intelligent, unknown DDoS attacks. To understand filters’ merits

for service availability, we follow the statistics community to define

their accuracy as
T P+T N

T P+F P+T N+FN , where TP is the true positive

(i.e., legitimate packets are correctly forwarded), TN is the true

negative (DDoS packets are correctly dropped), FP is the false posi-

tive (DDoS packets are mistakenly forwarded), and FN is the false

negative (legitimate packets are mistakenly dropped). It is easy to

verify that local filter’s accuracy in Equation 3 equals itself D∗
1,n (k).

3.2 Are Optimal Filters Effective for Attackers?
We next switch to the strategic attackers’ view to explore their

reactions under the optimal defenses in §3.1. As an asymmetric war,

intelligent DDoS is inherently advantageous to attackers rather

than defenders. We show a single defender’s optimal filters still fail

to eliminate intelligent DDoS due to three fundamental limits:

(1) DDoS-legitimacy indistinguishability: In the presence of

unknown vulnerabilities and mimicked DDoS traffic, no traffic fil-

ters can 100% accurately differentiate DDoS and legitimate traffic.

As shown in §3.1, the optimal filters’ accuracy equalsD∗
1,n (k), which

decreases monotonically with the adversary’s attack capacity µa .
Under heavier DDoS attacks, the single defender’s optimal filters

will misclassify more legitimate and DDoS traffic, thus mistakenly

disrupting the legitimate network service. Advanced anomaly de-

tections or more expensive stateful firewalls may help improve the

accuracy, but still cannot always succeed due to attackers’ exploited

unknown threats and mimicked DDoS traffic.

(2) Undiminished attack gains: Most adversaries are willing

to launch intelligent DDoS when the attack gains exceed costs (§2).

Even under the defender’s optimal filters in §3.1, it is still possible

for the smart adversary to adapt its attack strategy to retain appeal-

ing benefit-cost ratio. Specifically, given a fixed attack capacity µa ,
the attacker’s optimal DDoS strategy p∗a under defender’s optimal

filters D∗1,nin Equation 2 is as follows:

p∗a = argmax

pa
η(pa,D∗1,n) s.t.

∑
k

pka = 1, 0 ≤ pka ≤ 1,∀k

Note (p∗a,D∗1,n) forms the Nash Equilibrium in the intelligent DDoS,

because neither attacker nor defender can gain more if the other’s

strategy remains unchanged. p∗a is adversaries’ best attack strategy

when defenders have adopted the optimal filters. In §5.4, we will

showcase the concrete Nash Equilibrium in the popular amplifica-

tion attacks in Lemma 1. Here we show the adversary always has a

guaranteed lower bound of benefit-cost ratio at Nash Equilibrium,

thus always motivated to launch intelligent DDoS attacks if attack

capacity is cheap (which is mostly true in reality [56, 57]):



Theorem 2 (Lower bound of attack gains). At Nash Equilibrium,

at least 1

2

∑
k min

(
µap

k
a , µnp

k
n

)
DDoS traffic will bypass the opti-

mal filters in §3.1, and yield a lower bound of benefit-cost ratio
η(p∗a,D∗1,n) ≥ η(pn,D∗1,n) > 0 if legitimate traffic µn > 0.

Theorem 2 is proved in Appendix B. This guaranteed benefit-cost

ratio is achieved when the adversary fully mimics the legitimate

traffic pa = pn (e.g., via generative models like GAN). Such lower

bound is non-negligible as the DDoS traffic that reach victims grows

monotonically to attacker and defender’s capacity. Inmost cases, the

adversary gains even higher benefit-cost ratio (§5.4), thus motivat-

ing them to launch DDoS. Fundamentally, such non-disappearing

attack incentives arise from DDoS-legitimacy indistinguishability.

(3) Optimal filters’ vulnerability to traffic dynamics: The

analysis so far assumes the defender can always achieve the optimal

filters, which requires accurate prior knowledge legitimate traffic

distribution pn. In reality, however, both the legitimate and DDoS

traffic varies over time, thus incurring “noises” for the defender to

approximate the optimal filters
4
. In the presence of defender’s im-

perfect filters, the adversary can further refine its attack strategies

for higher benefit-cost ratio and increase the DDoS severity.

3.3 Problem Statement
We aim to overcome these limitations of existing defenses against

intelligent, unknown DDoS. We consider the threat model in §2

and seek a generic solution with

(1) Provable deterrence against intelligent DDoS: Even for

strategic and unknown attacks, it can provably null adver-

saries’ benefit-cost ratio to demotivate DDoS;

(2) Built-in incentives of deployment: Defenders are self-

motivated to adopt this solution for their own benefits;

(3) Affordability: The solution should be incrementally deploy-

able in today’s networks with marginal costs.

4 EID OVERVIEW
We devise EID, an Economical Intelligent DDoS Demotivation that

achieves all the goals in §3.3. Figure 2 overviews EID. EID is a dis-

tributed, signaling-free protocol among legitimate network nodes

(defenders). To overcome the limitations of single-hop defenses in

§3, EID explores multi-hop traffic divergence to provably null the

adversaries’ attack gains in intelligent, unknown DDoS. It designs a

meta-policy to recursively combine their local weak (yet divergent)

filters to form a strong global defense without knowing the attack
strategies or new threats. This cooperative meta-policy forces the

adversaries to be trapped into the Nash Equilibrium with a negligi-

ble benefit-cost ratio, thus demotivating them to launch attacks. EID

inherently incentivizes network nodes to participate with improved

network service availability. EID can scale up to massive filters via

aggregation and scale out to massive network nodes via distributed

on-demand DDoS demotivation. It is incrementally deployable with

random-drop filters in commodity nodes today. We next describe

EID’s key intuitions. The detailed design will be presented in §5.

Multi-hop traffic divergence (§5.1). Intuitively, to demotivate

all intelligent DDoS attacks, EID should minimize (or even void) the

4
From adversarial machine learning perspective, it is well known that the training of

GAN discriminators (i.e., traffic filters in our context) are vulnerable to noises [58, 59].

adversaries’ maximal gains regardless of their attack strategies or

(unknown) vulnerabilities. This is deemed impossible for a single

defender: As proved in Theorem 2, due to the DDoS-legitimacy in-

distinguishability, even the optimal single-hop filters do not suffice

to prevent adversaries from launching DDoS. To this end, EID seeks

to bypass this fundamental limit via multi-hop mitigations.

We observe that, multi-hop traffic divergence offers a ubiquitous

and strong paradigm to help trap smart attackers. As we will show

in §7.1, real network traffic from different nodes is highly diverse

due to heterogeneous user behaviors and network capabilities. Con-

sider the case when nodes on the path adopt local optimal traffic

filters in §3. Since each hop’s filter in Equation 3 is based on its local

legitimate traffic distribution, the adversary now faces the dilemma

of whose traffic it should mimic (exemplified in FIgure 3). With large

traffic divergence, mimicking one hop’s traffic causes significant

difference from other hops’, thus lowering the success of passing

all hops’ filters for effective DDoS. This dilemma persists for the

adversary regardless of its strategies or exploited (new) threats. By

taking advantage of their traffic divergence, defenders can always

cooperatively nulls adversaries’ attack gains. Note that unlike tra-

ditional single-hop defenses, such multi-hop divergence does not
seek to help explicitly distinguish between malicious and normal

traffic. Instead, it bypasses “indistinguishability” by demotivating

adversaries to run DDoS in the first place.

Clearly, the success of aforementionedDDoS demotivation largely

relies on how “divergent” multi-hop traffic distributions are. In §5.1,

we will define the multi-hop traffic divergence by generalizing

the f -divergence [36] in our context. We will elaborate on its in-

tuitions in intelligent DDoS, basic properties, and the relation to

f -divergence and our optimal DDoS filters in §3.

Divergence-boosted demotivation policy (§5.2): With traffic

divergence, EID recursively combines weak (yet divergent) local

filters from multi-hop defenders to form a strong global DDoS

demotivation. This meta-policy offers three appealing properties:

(i) Global DDoS demotivation: With sufficient traffic divergence,

the adversary’s benefit-cost ratio asymptotically converges to 0,

regardless of its attack strategies or exploited vulnerabilities;

(ii) Local incentives of cooperation: As the adversary’s optimal DDoS

traffic holistically adapts to all hops’ traffic distributions for maxi-

mal gains, it will significantly deviate from each hop’s local legiti-
mate traffic. This facilitates DDoS-legitimacy classification at each

hop, thus motivating defenders to join EID for boosted local service

availability (asymptotically 100%).

(iii) Resiliency to traffic dynamics: Multi-hop traffic divergence per-

sists despite temporal traffic dynamics. Therefore, EID is tolerant

to traffic dynamics and retains its effectiveness against DDoS. It

does not mandate accurate implementations of local optimal filters.

Scalable on-demand demotivation protocol (§5.3) Although

hop-by-hop filters demotivate intelligent DDoS via traffic diver-

gence, they are also expensive with additional per-packet process-

ing overhead. To this end, EID offers a fully distributed protocol

that minimizes the number of hops needed to demotivate ongoing

DDoS attacks. This protocol leverages each hop’s local incentives to

participate in the DDoS demotivation on demand, without requiring
centralized coordination or additional signaling overhead.
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Figure 3: EID’s intuition: Multi-hop traffic divergence (§5.1) and recursive combination of divergent filters (§5.2).

Showcase: AmplificationDDoS (§5.4) Wenext showcase EID’s

powerfulness with a concrete example of amplification DDoS at-

tacks, one of the most popular DDoS attacks in reality [6–8]. We

detail adversaries’ optimal strategies at the Nash Equilibrium, and

demonstrate how EID demotivates the adversaries by compressing

their bandwidth amplification factors (i.e., benefit-cost ratio).

5 THE EID DESIGN
We next elaborate on each solution component in EID.

5.1 Multi-hop Traffic Divergence
EID’s core idea is to exploit multi-hop traffic divergence to demo-

tivate any intelligent DDoS. We next define the traffic divergence,

explain its intuitions in the DDoS context, list its key properties,

and clarify its relationship with f -divergence in statistics.

Definition: Figure 3 visualizes the multi-hop traffic divergence

in a network. We start with two hops. As shown in §3.1, each hop’s

traffic distribution p = (µp ,p1, ...,pk , ...) is a tuple of its total capac-
ity µp and probability of traffic types k = 1, 2, ...K with

∑
k pk = 1

5
.

Given two hops with traffic distributions p = (µp ,p1, ...,pk , ...) and
q = (µq ,q1, ...,qk , ...), we define their traffic divergence d(p, q) as

d(p, q) ≜
∑
k

(
1

µppk
+

1

µqqk

)−1
(4)

We next generalize this to n hops. Given n hops with distributions

p1, p2, ..., pn(n ≥ 2), we define their traffic divergence as

dn = d(p1, p2, ..., pn) ≜
∑
k

©­«
n∑
j=1

1

µ jp
k
j

ª®¬
−1

=
∑
k

dkn (5)

where dkn = (
∑n
j=1

1

µ jpkj
)−1 is the divergence for each traffic type k .

Note this n-hop traffic divergence is equivalent to a 2-hop traffic

divergence in Equation 4 by the following recursion:

dn+1 = d(p1, p2, ..., pn+1) = d(pn+1, qn)

where qn = (dn,q1n, ...qkn ) is an equivalent traffic distribution with

total capacity as dn = d(p1, p2, ..., pn) and

qkn =
1

dn

(
1

µnp
k
n
+

1

dn−1q
k
n−1

)−1
=
dkn
dn

(6)

as probability for traffic type k . Such recursive definition ensures

all properties in 2-hop divergence also apply to n-hop divergence.

Intuitions behind this definition: The traffic divergence in

Equation 4 and 5 reflect two traffic distributions’ “distance” in our

5
As we will detail in §5.3, the granularity of EID’s traffic type space K is flexible, e.g.,

per-protocol level, per packet header level, and packet header+payload level (Figure 4).

optimal DDoS filters in §3.1. As visualized in Figure 3, assume a hop

with legitimate traffic p2 seeks to filter malicious traffic passing the

previous hop with distribution p1. With the optimal filters in §3.1,

the remained total malicious traffic equals their traffic divergence:∑
k

µ1p
k
1
D∗
1,2(k) =

∑
k

µ1p
k
1
· µ2p

k
2

µ1p
k
1
+ µ2p

k
2

= d(p1, p2)

Recall that from GAN’s perspective, the optimal filters in §3.1 max-

imize the discrimination between p1 and p2 (Theorem 1). The more

divergent p1 and p2 are, the less p1’s traffic remains after passing

p2’s optimal filters, and therefore the smaller d(p1, p2) is. After the
filtering, the remained malicious traffic for each type k forms a new

traffic distribution q2 = (d2,q1
2
, ...qk

2
) as defined in Equation 6. This

new distribution is passed to the next hop for filtering, and results

in the recursive n-hop traffic divergence definition in Equation 5.

Basic properties of multi-hop traffic divergence: The fol-

lowing theorem lists key properties for later designs (proved in

Appendix C). As we will see in §5.2, these properties enable a pow-

erful paradigm to demotivate intelligent, unknown DDoS attacks.

Theorem 3 (Properties of Traffic divergence). The traffic diver-
gences in Equation 4 and 5 always guarantee the following properties:
• Symmetry: d(p, q) = d(q, p);
• Bounded & non-negativity: 0 ≤ d(p, q) ≤ 1

4
(µp + µq );

• Identity: d(p, q) is maximized if and only if p = q, i.e., µp = µq
and pk = qk ,∀k ; and
• Monotonicity: dn ≤ min (dn−1, µn ) ≤ mini ∈[1,n] µi , and “=”
holds if and only if dn−1 = d(p1, ..., pn−1) = 0.

Relationship with f -divergence: Equation 4 and 5 can be

viewed as an extension of f -divergence [36], a classical metric to

measure the “distance” between two probability distributions in sta-

tistics. Given a parameterized convex function f (x) with f (1) = 0,

the f -divergence is defined as Divf (p| |q) =
∑
k qk · f

(
pk
qk

)
. In the

DDoS context, EID generalizes f -divergence in two aspects, while

f -divergence cannot quantify the divergence due to heterogeneous
network capacity. First, EID considers network capacity rather than

probability distribution only. As a special case, when µp = µq = µ
(identical total traffic), EID’s traffic divergence is equivalent to

f -divergence: d(p, q) = µ
∑
k

pkqk
pk+qk

= µ
[
1

2
− Divf (p| |q)

]
, where

f (x) = 1

2
− x

x+1 . Second, EID generalizes its traffic divergence to

arbitrary n distributions that f -divergence cannot.

5.2 Divergence-Boosted Demotivation Policy
With multi-hop traffic divergence, EID empowers defenders with a

meta-policy to demotivate intelligent, unknown DDoS attacks. This



meta-policy combines weak (yet divergent) local filters from multi-

hop defenders to form a strong global DDoS mitigation. We prove

how it nulls the attacker’s benefit-cost ratio at Nash Equilibrium,

explain how it incentivizes multi-hop defenders to participate, and

discuss its resiliency to network traffic dynamics.

Recursive combination of divergent filters: Consider the

multi-hop DDoS filters in Figure 3. For each hop n, its local traffic

is an aggregation of legitimate and DDoS traffic. With multi-hop

filters, the DDoS traffic has been filtered by the previous n − 1 hops
before reaching n. So hop n’s incoming rate of traffic type k is

okn = µnp
k
n + µap

k
aDn−1(k)

where pn = (µn,p1n, ...,pkn , ...) is hop-n’s local legitimate traffic, pa
is adversary’s DDoS traffic, and Dn−1(k) is the accumulative traffic

filter for k from previous n − 1 hops and is derived recursively as

Dn (k) = Dn−1(k) · D1,i (k)(n > 1),D1(k) = D1,1(k)

If alln hops adopt local optimal filters in §3.1, the following theorem

shows the accumulative filter D∗n (k) is equivalent to an optimal

local DDoS filter in Theorem 1 over an equivalent legitimate traffic

distribution qn (proved in Appendix D)

Theorem 4 (Recursive combination of divergent filters). The accu-
mulative n-hop optimal filter D∗n (k) is equivalent to a single-hop opti-
mal filter in Equation 3with legitimate traffic qn = (dn,q1n, ...,qkn, ...):

D∗n (k) =
dnq

k
n

dnq
k
n + µap

k
a

(7)

qkn =
1

dn

(
1

µnp
k
n
+

1

dn−1q
k
n−1

)−1
=
dkn
dn

(8)

dn = d(pn, qn−1) = d(p1, p2, ..., pn) (9)

Theorem 4 bridges EID’s multi-hop DDoS filters with traffic

divergence. Figure 3 visualizes its intuition. As explained in §5.1,

multi-hop traffic divergence dn and equivalent legitimate traffic

distribution qn reflect the remaining traffic after passing all hops’

DDoS filters. The remaining DDoS traffic would thus be the di-

vergence between the original DDoS traffic distribution pa and

equivalent legitimate traffic distribution qn, thus resulting in The-

orem 4. Although each local filter may be weak (§3.1), their com-

bination can be strong due to traffic divergence. To this end, EID

adopts Theorem 4 to combine divergent multi-hop filters for DDoS

mitigation.

Global demotivation for intelligent DDoS: With EID’s multi-

hop filters, we next analyze how much an intelligent adversary

can gain at most from launching DDoS. To optimize its attack

strategy under multi-hop filters, the adversary should follow §3.2

under the accumulative optimal filter D∗n . To pass multi-hop filters,

the adversary must holistically adapt its DDoS traffic to all hops’

legitimate traffic. If multi-hop defenders’ traffic divergence is huge,

the adversary faces the dilemma of whose traffic to mimic. We show

that, its benefit-cost ratio will decrease with the traffic divergence

(proved in Appendix E):

Theorem 5 (Demotivation with traffic divergence). Regardless of
its attack strategy and capacity µa , any adversary in §2 satisfies

• its benefit-cost ratio η(pa,D∗n) and attack gainU (pa,D∗n) de-
crease monotonically with traffic divergence dkn ,∀k and

lim

dn→0

η(pa,D∗n) = 0, lim
dn→0

U (pa,D∗n) = 0

• its benefit-cost ratio η(pa,D∗n) and attack gainU (pa,D∗n) de-
crease monotonically with hop count n and

lim

n→∞
η(pa,D∗n) = 0, lim

n→∞
U (pa,D∗n) = 0

Theorem 5 unveils two powerful options in EID to demotivate

any intelligent DDoS. First, if two hops’ traffic divergence is large,

Theorem 5 ensures no adversary can gain from DDoS. Second, in

case two-hop traffic divergence is small, EID guarantees to enlarge

the traffic divergence with more hops (Theorem 3), thus still prov-

ably demotivating intelligent DDoS. Of course, more hops imply

higher traffic processing latency and costs. In §5.3, we will show

how EID adapts the active defenders for on-demand demotivation.

Local incentives to join EID: We next switch to defenders’

perspective and investigate their incentives of adopting EID. To

maximize its attack gain, the adversary should holistically adapt its

DDoS traffic pa to the equivalent legitimate traffic distribution qn.
But from each hop’s perspective, this optimal strategy results in

significant divergence between DDoS traffic pa and local legitimate

traffic pn. This helps each defender refine its local filter accuracy and
network service availability. Specifically, at Nash Equilibrium of the

intelligent DDoS game, once the adversary is demotivated to launch

attacks, each defender will end up with 100% local filter accuracy

and network availability. The following theorem quantifies EID’s

improvement of local filter’s accuracy (proved in Appendix F):

Theorem 6 (Boosted local filters with EID). At Nash Equilibrium,
for each hopm (m=1,2,...,n), its local filter satisfies limdn→0

D∗
1,m (k) =

1 and limn→∞ D∗
1,m (k) = 1,∀k (i.e., no traffic blocked).

Natural support for multiple attack paths: The results so

far are presented with same attack path for simplicity, but EID

naturally supports multiple paths. The key is that, multi-hop traffic

divergence remains for every target’s path. Attacking multiple

targets with the same infrastructure increases adversaries’ benefits,

but is still mitigable by EID with each path’s multi-hop divergence.

All results thus still hold for adversaries/victims on different paths.

Resilience to network traffic dynamics: EID is more robust

to network dynamics than single-hop defenses. Recall traffic dy-

namics make it difficult to accurately estimate legitimate traffic

distribution that the single-hop filters in §3.1 mandate. Instead,

multi-hop traffic divergence relaxes the reliance on accurate traf-

fic estimation. Despite the temporal dynamics of multi-hop traffic,

their divergence remains and persists. This suffices to demotivate

intelligent DDoS in EID, as we will evaluate in §7.2. Each hop’s local

traffic dynamics only affect its own filter’s accuracy, which can also

be compensated by traffic divergence according to Theorem 6.

5.3 On-Demand Demotivation Protocol
We next convert EID’s meta-policy in §5.2 to a scalable, distributed

protocol. We require the EID protocol should scale up to excessive

exploited protocols and applications inside each node, and scale out
to massive nodes (hops) in the large network. In achieving so, we
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Algorithm 2 EID’s distributed, on-demand hop pruning.

Input: Runtime traffic okn (t ) and maximal load µkn at hop n
Output: Whether filter D∗

1,n (k ) be activated at time slot t
1: T ← 0; ▷ Initialization at t = 0.
2: if D∗

1,n (k , t ) < D∗
1,n (k , t − 1) then ▷ Local filter is less accurate. Enable it when necessary.

3: T ← max(µmax,T + 1); ▷ Wait other hops to enable their local filters

4: if T ≥ µkn then return true; ▷ Now n is the inactive hop with the smallest µkn
5: else ▷ Local filter is more accurate. Disable it when necessary.
6: T ← min(0,T − 1); ▷ Wait other hops to disable their local filters

7: if T = 0 then return false; ▷ Now n is the active hop with the largest µkn
8: end if

Inactivek Activek

D*1,n(k) ↓ in μn
k steps 

D*1,n(k) ↑ in μmax-μn
k steps 

D*1,n(k) does not ↑D*1,n(k) does not ↓

Figure 5: EID’s protocol state machine for hop pruning.
face the challenge of balancing the DDoS mitigation efficiency and

system overhead. This tradeoff spans on both dimensions:

◦ Scale-up: Finer-grained filters at each hop. With the rise of

layer 7 intelligent DDoS attacks, it is not always sufficient to detect

malicious traffic by checking the packet header only. Instead, deep

packet inspections (DPIs) have been widely adopted to check more

contents in each packet for DDoS detection. However, finer-grained

detection incurs more filters (larger K ) and per-packet processing

costs that some nodes cannot afford (e.g., low-end IoT devices and

latency-sensitive edge nodes). To scale up inside each hop, EID

should seamlessly balance filter granularity (accuracy) and costs.

◦ Scale-out: Multi-hops in large networks. As shown in Theorem 5,

EID is more effective with more hops (thus larger divergence). But

hop-by-hop filtering can be expensive: The per-packet processing

costs accumulate withmore EID nodes. Moreover, it is not necessary

to activate all nodes all the time. Large traffic divergence among

fewer nodes also suffices to deter DDoS. To scale to large networks,

EID should adapt the active hops for low-cost demotivation.

To this end, EID devises on-demand DDoS demotivation. To scale

up to finer-grained filters at each hop, EID supports composable
filters to seamlessly balance the filter granularity (accuracy) and cost.

To scale out to large networks, EID runs distributed hop pruning
based on runtime DDoS severity. We next elaborate on each.

Scaling-up: Composable filters at each hop. EID supports

finer-grained detection by customizing the traffic type space K (e.g.,

from header space to entire payload, as exemplified in Figure 4).

The cost, however, is more per-packet processing delay and system

overhead. The granularity-cost tradeoff depends on each node’s

capability and demand. For example, some delay-sensitive edge and

resource-constrained IoT devices may prefer coarse-grained filter.

EID supports seamless latency-accuracy tradeoff with compos-
able optimal filter. As exemplified in Figure 4, any coarse-grained

filter (e.g., based on header space only) can be decomposed into

multiple fine-grained filters (e.g., based on header and payload),

without hurting the resilience to DDoS. Specifically, for all pack-

ets with header k , if finer-grained filters are used, the aggregated

coarse-grained filter for k can be derived from the Bayesian rule:

D1,n (k) =

∑
k ′ .hdr=k D

∗
1,n (k

′ |k) · (µip
k ′ |k
i + µap

k ′ |k
a )∑

k ′ .hdr=k (µip
k ′ |k
i + µap

k ′ |k
a )

=

∑
k ′ .hdr=k µip

k ′ |k
i∑

k ′ .hdr=k (µip
k ′ |k
i + µap

k ′ |k
a )

=
µip

k
i

µip
k
i + µap

k
a
= D∗

1,n (k)

which equals to the coarse-grained optimal filter based on header

only. All properties in §5.1 still hold. So each node can customize op-

timal filters with flexible, hybrid granularity and seamless latency-

accuracy tradeoff (e.g., coarse-grained filter for delay-sensitive edge

applications, and fine-grained ones for reliability-sensitive traffic).

Scaling-out: Distributed, on-demand hop pruning. To scale

out to massive network nodes, EID adaptively prunes active hops,

while retaining demotivation against DDoS. This results in two

questions: (a) What are the right criteria for “sufficient” demotiva-

tion? (b) Which nodes should be (de)activated under this criteria?

◦ Criteria for “sufficient” divergence for demotivation. Intuitively,
EID should invoke more nodes to defend against serious DDoS

attacks, and inactivate them if there are no attacks. In our protocol,

each node locally signals the DDoS severity and thus required

divergence based on its local service availability D∗
1,n (k) (§3.1), and

decides whether to join EID for its own merits (i.e., boosted local

accuracy for higher service availability).

◦ On-demand hop (de)activation. For effective DDoS mitigation

with low costs, EID incrementally activates (deactivates) a node

that maximizes (minimizes) the increment (decrement) of traffic

divergence. Consider a path with n nodes,m of which have been

activated for traffic type k . Under high DDoS threats, the next node

to activate EID for k is the one with the smallest µkm+1 = µm+1p
k
m+1,

such that the increment of traffic divergence is maximized according

to Equation 5. Similarly, under low DDoS threats, the next node to

deactivate is the one with the largest µkm−1, such that the decrement

of divergence is minimized. In this way, EID retains deterrence

against DDoS with minimal active nodes (thus lowest costs).

Algorithm 2 and Figure 5 illustrate how EID realizes this on-

demand node pruning in a fully distributed, signaling-free fashion.

We assume a discrete-time model with a per-defined time slot size

(agreed by all nodes). At each time slot, each node locally signals the

DDoS severity based on Equation 2. When DDoS threat raises, each

inactive nodem starts to wait for µkm+1 time slots before activating

its local filter for k . Therefore, nodes with smaller µkm+1 will activate
its local filter earlier and increase all nodes’ local service availability.
Ifm observes the increment of its local accuracy before timeout, it

means other better nodes have joined and successfully mitigated

DDoS. Then it does not need to join. Otherwise, upon timeout,m
would be the next best node to join. Similarly, when DDoS becomes

less serious, this backoffmechanism ensures nodeswith larger µkm+1
leaves earlier, thus ensuring on-demand pruning. This protocol is

fully distributed without additional signaling costs. Moreover, it is

incentive-compatible: Each node is self-motivated to join/leave EID

based on its own merits (i.e., local service availability).
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5.4 Showcase: Amplification DDoS
We last use a concrete example to demonstrate the powerfulness

of EID: Amplification DDoS. Since 2016, Amplification DDoS has

contributed more than 80% large-scale DDoS attacks (>1 Tbps) in

the world [6–8]. Figure 6 illustrates how it works. An adversary

sends spoofed requests (with victim’s IP address as the source) to a

huge number of benign reflectors (amplifiers). Upon receiving these

requests, the reflectors will replymuch larger responses (usually 10–

500× larger than request [47]) to the spoofed address (i.e., victim),

exhaust the victim’s network bandwidth or computing resource.

Amplification DDoS is popular today because adversaries can

easily exhaust the victims with the help of reflectors at low costs. A

well-known metric to quantify the benefits from the amplification

DDoS is the bandwidth amplification factor: η =
Response packet size

Request packet size
.

If η > 1, the adversaries have the motivation to leverage reflectors

due to their amplification effect; otherwise direct attacks without

reflectors are more beneficial. For example, attacks via open reflec-

tors (e.g., DNS resolvers) have lower but non-zero costs (bandwidth

consumed by attackers’ spoofed requests to reflectors), thus unfa-

vorable if reflectors’ responses are smaller than spoofed requests

(η < 1). Under EID, the expected amplification factor becomes

η(pa,D) =
U (pa,D)

µa
=

∑
k

ck · p
k
aD
∗
n (k) (10)

U (pa,D) =
∑
k

ck · µap
k
aD
∗
n (k) (11)

whereU (pa,D) is the eventual amplified DDoS traffic (by reflectors)

to the victim after passing EID’s multi-hop filters, η is the average

bandwidth amplification factor, ck is the amplification factor for

protocol k (exemplified in Figure 10), and Dn (k) is EID’s multi-hop

filter in §5.2. Note that, such bandwidth amplification factor is a

special case of the benefit-cost ratio in EID’s threat model (§2). We

first derive the adversary’s optimal attack strategies under EID:

Lemma 1 (Optimal Amplification DDoS at Nash Equilibrium).
Given the attack capacity µa , the adversary’s optimal attack pol-
icy that maximizesU (pa,D) and η(pa,D) under EID is as follows:
•Mixed DDoS attack: If the amplification factors satisfy

max

k

qkn
√
ck

ωnq
k
n + 1 − ωn

≤ Eqn
√
c ≤ min

k

√
ck
ωn

(12)

where ωn =
dn

dn+µa
and Eqn

√
c =

∑
k q

k
n
√
ck . Then the adversary’s

optimal amplification DDoS policy is to distribute the attack traffic
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with the following probability:

pka =
ωnq

k
n

1 − ωn

( √
ck

ωnEqn
√
c
− 1

)
(13)

and adversary’s maximal amplification factor is

max

pa
U (p∗a,D

∗) = dnEqn [c] − dnωn (Eqn [
√
c])2 (14)

• Simple DDoS attack: Otherwise, the adversary’s optimal ampli-
fication DDoS policy is to choose only one protocol as

pka =


1 if k = argmaxj

dnqkn ·µack
dnqkn+µa

0 otherwise
(15)

and adversary’s maximal amplification factor is

max

pa
U (p∗a,D

∗) =
dnq

k
n · µack

dnq
k
n + µa

(16)

In both cases, the optimal amplification factor maxpa η(p
∗
a,D∗) =

maxpa U (p
∗
a,D∗)/µa and (p∗a,D∗) forms the Nash Equilibrium be-

tween attackers and defenders.

Lemma 1 uncovers adversaries’ best amplification attack traffic

under EID. In reality, both simple and mixed DDoS attack strategies

are commonly observed [6–8, 60]. We next show that, both optimal

attacks are bounded by traffic divergence (proved in Appendix H):

Theorem 7 (Amplification DDoS bound by traffic divergence). For
any amplification DDoS strategy, EID always limits the adversary’s
attack gain and benefit-cost ratio with the following bound

max

pa
U (pa,D∗) ≤

{
dnEqn [c] if (12) holds
dnck otherwise

(17)

max

pa
η(pa,D∗) ≤

{ dn
µa Eqn [c] if (12) holds
dn
µa ck otherwise

(18)

both bounds are monotonic to traffic divergence dkn for each k , and
limdn→0

maxpa U (pa,D
∗) = 0, limdn→0

maxpa η(pa,D
∗) = 0.

Theorem 7 shows the maximal amplification factor decreases

with traffic divergence. EID suffices to demotivate amplification

DDoS when multi-hop traffic divergence dn ≤ min(
µa

Eqn [c]
,
µa
ck
) for

maxpa η(pa,D
∗) ≤ 1. We will experimentally validate this in §7.2.
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6 IMPLEMENTATION
We focus on three aspects of EID implementation: (1) How to realize

EID in existing commodity nodes? (2) How can EID and state-of-

the-art DDoS defenses coexist and mutually benefit each other? (3)

How to incrementally deploy EID in today’s networks?

To this end, our implementation follows three principles:

(I) EID based on random-drop filters:We realize EID as random-

drop policies that have been widely supported by commodity

hosts [61, 62], routers [63, 64], and firewalls [65]. This allows

EID to be readily implemented in today’s networks.

(II) EID as a post-processor: To coexist with existing defenses and

take their advantages, EID is packaged as a post-processor of

traffic after existing defenses (e.g., spoofing detection, queue

management, rule-based filters, etc). This approach ensures

EID works coherently with existing defenses. It takes advan-

tage of existing defenses against well-known threats, and com-

plements them to defend unknown, intelligent DDoS threats.
(III) Hybrid EID deployment: EID can coexist with legacy network

nodes today. Due to EID protocol’s distributed, signaling-free

nature (§5.3), legacy nodes do not need to make any changes

to work in concert with EID nodes.

Figure 7a shows EID’s logical components at commodity nodes

in hybrid deployments. At each EID-aware node, we add three mod-

ules as post-processors after existing defenses: The traffic load mon-

itor that tracks the severity of DDoS (§3.1), the traffic divergence-

based DDoS filters on top of readily-available random-drop filters

(§5.1–5.2), and on-demand DDoS demotivation via filter reconfig-

uration (§5.3). At each hop n, these modules work as follows: (1)

Estimate legitimate traffic pn. This can be either profiled offline or

estimated online with standard traffic monitoring functions in com-

modity hosts/routers. Different from existing defenses in §3.1, EID

does not need 100% accurate traffic distributions since multi-hop

traffic divergence-based DDoS demotivation is resilient to traffic

dynamics (§5.2); (2) For each traffic type k , add a new random-

drop filter with activation threshold µnp
k
n and forward probability

D∗
1,n (k) in Equation 2. With multi-hops running EID, this achieves

the optimal demotivation in §5.1–5.2; (3) For each rule in (b), the on-

demand demotivation follows Algorithm 2 to (de)activate it based

on runtime load monitor (§5.3); If the rule should be activated, con-

catenate it to the end of existing DDoS defense rules (post-processing
principle). This takes advantage of existing defenses, and ensures

incremental deployment and seamless rollback.

Prototype: We follow the above methodology to prototype EID

on Palo Alto Networks Enterprise Firewall PA-7050 [66] in our

campus network testbed (Figure 8). PA-7050 has built-in support

for random-early drop policies, thus facilitating our EID implemen-

tation [65]. With its hardware processing offloading capability (6

network processing cards, each having 64 processing cores), this

firewall supports up to 396 Gbps throughput with threat preven-

tion, and up to 4M new sessions per second. For fair comparisons in

experiments (§7), we use MachLake-TFA traffic analytics platform

to remotely monitor and store three hops’ pcap traces, redirect

them to the firewall, implement one EID instance per hop, and

concatenate their filters based on the topology (Figure 8).

7 EVALUATION
We evaluate EID with trace-driven experiments in an operational

campus network. We first characterize multi-hop traffic divergence

in reality (§7.1). Then we evaluate EID’s effectiveness and costs

from attacker (§7.2) and defender’s (§7.3) perspectives.

Experiment environment: We evaluate EID in Tsinghua Uni-

versity’s campus network, as shown in Figure 8. This network

serves 59 departments and 45,000+ concurrent users. It experiences

tens of noticeable DDoS attacks every day from U.S., China, Europe,

and elsewhere. The DDoS attacks are diverse and mixed, including

UDP flood, TCP SYN flood, amplification attacks (DNS, NTP, ICMP,

SNMP, SSDP, Memcache, etc.), layer-7 DDoS, to name a few. To

defend them, the network operator deploys a PA-7050 firewall [66]

at the campus gateway, where we prototype EID as detailed in §6.

Dataset: We run a 24-hour data collection at three hops (blue

nodes in Figure 8): The campus gateway, the intermediate core

router, and the end department (Mechanical Engineering or ME).

Within 24 hours, the ME department typically experiences 10s of

noticeable DDoS within 24 hours, with 200-400 active victims in

the department. We concurrently log pcap packet traces at all hops,

resulting in a 49.8 TB dataset with 48,760,584 packets from 168

network protocols or applications. Moreover, to evaluate real DDoS

attacks, we also collect a 24-hour amplification DDoS pcap trace

from Alibaba cloud DDoS HoneyPot [67] (external open reflectors) .

The honeypot voluntarily makes itself vulnerable to attract and lure

hackers. The adversaries use their tools to exploit this “vulnerable”

reflector, which allow us to monitor their attack traffic as ground

truth.

Ethical evaluation: This work does not raise ethical issues. We

responsibly conduct data collections and experiments. The dataset

from all nodes was collected under the operator’s approval. To

avoid user privacy leakage, we anonymized raw pcap packets by

removing privacy-sensitive payloads and anonymizing IP addresses.

Moreover, we bear in mind that imperfect DDoS filters over the

operational network can mistakenly block legitimate traffic, thus

detrimental to user experiences (§3.2). Instead, we conduct an offline

evaluation by replaying the above three-hop legitimate and DDoS

traces in EID on the firewall.

7.1 Traffic Divergence and Dynamics in Reality
We characterize the multi-hop traffic divergence in the campus

network. We replay the 24-hour traces from three nodes in Figure 8,

estimate their traffic distributions every 10 minutes, and follow §5.1

to compute the traffic divergence d3 and d
k
3
for each protocol. We

compare the runtime traffic divergence with per-hop traffic rate.
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Figure 9 and Figure 10 plot the runtime traffic from our dataset.

They validate that both traffic distributions vary dynamically over

time. Moreover, Figure 10 shows adversaries exploit various pro-

tocols to run DDoS and adapt their attack strategies dynamically.

As explained in §3.2, both incur “noises” to accurately differenti-

ate legitimate and DDoS traffic and thus prevents the realization

of optimal single-hop defenses. Meanwhile, the legitimate traffic

between different nodes exhibits large diversity. In our tests, the

campus gateway, core router, and ME department exhibit approx-

imately 5.806 Gbps, 407.778 Mbps, and 35.535 Mbps total traffic,

respectively. Their traffic distributions also differ and vary over

time, which implies significant traffic divergence.

Figure 11 and Figure 12 show the temporal dynamics and statis-

tics of multi-hop traffic divergence (normalized by the peak traffic

rate for the ease of comparison). We make three observations. First,

we confirm significant traffic divergence between the campus gate-

way, intermediate core router, and end department. Figure 12 shows

the traffic divergence d3 is 30% smaller than the smallest per-hop

traffic rate (Lemma 3). Second, traffic divergences differ between

protocols. For example, we note for SNMP and DNS, the end depart-

ment (3rd hop)’s traffic rate is sometimes higher than the gateway

(1st hop) due to the traffic exchange inside the campus. Such inter-

nal traffic proliferates the traffic diversity among network nodes.

Third, similar to traffic dynamics, the multi-hop traffic divergence

also varies over time. But as the harmonic mean of three hops’

traffic (Equation 5), traffic divergence is usually smoother than per-

hop traffic. All these observations imply that traffic divergence is a

promising paradigm for DDoS mitigation.

7.2 Effectiveness Against Intelligent Attackers
We next evaluate EID from the attacker’s perspective. We assess

EID’s effectiveness against intelligent DDoS with two concrete ex-

amples: reflective amplification DDoS (§5.4) and direct UDP flood-

ing.We replay the three-hop legitimate traffic in Figure 9 in EID (§6).

To attack them, we generate and test two DDoS attacks strategies:

(1) Optimal DDoS strategies against EID in §5.4; (2) Real DDoS
strategies observed in our dataset from the BotNet (Figure 10). For

amplification DDoS, we evaluate adversaries’ benefit-cost ratio in

Equation 11, based on the real bandwidth amplification factors from

CISA [47, 68](30.8 for SSDP, 28.7 for DNS, 51,000 for Memcache,

6.3 for SNMP, 556.9 for NTP, 3.8 for BitTorrent, 5.5 for Steam).

For direct UDP flooding, Kaspersky reports each DDoS’s profit

margin can reach 95% [69, 70]. So we define its benefit-cost ratio

η =
∑
k ck · p

k
aD
∗
n (k) where ck =

DDoS profits

DDoS price
≈ 1.95 according to

[69, 70] We repeat this experiment under different attack capacities

µa (from 100Mbps to 1Tbps) and varying number of hops joining

EID (from 1 to 3, with 1-hop filter being the state-of-the-art opti-

mal defenses in §3.1). To evaluate EID against unknown threats, all

nodes in these experiments have no prior knowledge of adversaries’
DDoS distributions or strategies.

Overall effectiveness against intelligent DDoS: Figure 14

and Figure 16a plot the adversary’s benefit-cost ratio under amplifi-

cation and direct DDoS, respectively. We make three observations.

First, for both optimal and real DDoS attacks, EID’s optimal filters

in §5.2 reduce most of adversaries’ benefit-cost ratio to be η < 1

under tested attack capacities. Recall when η < 1, the adversary

has no motivation to exploit reflectors to amplify the DDoS traffic

(§5.4). So EID successfully demotivates the adversaries to launch

such DDoS attacks. Second, as shown in Figure 14b, adversaries’

benefit-cost ratio decreases as more hops join EID due to larger

traffic divergence. Third, adding more attack capacity µa does not

help the adversary gain more. Instead, as shown in Theorem 7,

Figure 14 and Figure 16a, more attack capacity raises adversaries’

costs and lowers benefit-cost ratios.

Comparison of DDoS attack strategies: Figure 14 and 16a

confirm that the optimal DDoS strategy in Lemma 1 outperforms

the real DDoS in Figure 10 in all tested scenarios. Note that the real

attack strategy in Figure 10 always adopts mixed DDoS, while the

optimal strategy in Lemma 1 may adopt simple DDoS sometimes.

Figure 13 plots the frequency of mixed DDoS in the optimal strategy

under different attack capacities and EID hop counts in our 24-

hour experiment. The optimal strategy adopts mixed DDoS more

frequentlywith larger attack capacity µa or higher traffic divergence

(from 1 to 3 hops in this case), because both raise the adversaries’

risk of being detected by EID if all DDoS traffic comes from a single

protocol (i.e., simple DDoS). This phenomenon also explains the

similar trend of benefit-cost ratio under 100Mbps-1Tbps attack

capacities in Figure 14a, in which the adversary will always adopt

mixed DDoS according to Figure 13. Even so, EID still guarantees

the adversaries are demotivated even under the optimal attack.

Resiliency to traffic dynamics: Figure 14a and 16a confirm

EID remain effective against DDoS under dynamic traffic. With

traffic dynamics as “noises”, each hop’s local filtersmay deviate from

the optimal ones (§3.2). But the traffic divergence persists despite

traffic dynamics, thus ensuring always-on DDoS demotivation.

7.3 Efficiency and Overhead for Defenders
We next switch to the victims’ perspective to evaluate their benefits

and costs in adopting EID. When the adversaries are rational, §7.2

has shown that they will stop attacking, resulting in 100% legitimate
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service availability for the victims and defenders. Instead, here we

consider (irrational) adversaries that insist on attacking despite no

merits for themselves. In this case, we repeat the experiments in

§7.2 to quantify the defender’s benefits and costs of joining EID.

Local incentives to participate EID: Figure 15 and Figure 16b

plot the ME department (hop 3)’s local legitimate service availabil-

ity (Equation 3 as proved in §3.1) under different attack capacities,

attack strategies, and number of hops joining EID. We make two

observations. First, as more nodes join EID, each hop’s local service

availability is also improved as explained in Theorem 6. This offers

a strong local incentive for each node to join EID. Second, despite

irrational adversaries, EID still retains ≈99.99% local service avail-

ability under real DDoS attacks. Under optimal DDoS attacks, EID

ensures ≈84.78% service availability with 3 hops on average, which

can be further improved with more hops and traffic divergence.

Scalable, on-demand demotivation: Following §5.3, we next

evaluable EID’s scalability for defenders in two aspects:

◦ Scale-up: Composable filters at each hop. As explained in §5.3,

EID’s composable optimal filters support seamless accuracy-cost

tradeoff. Figure 17 evaluates the local legitimate service availability

with local optimal filters based on total traffic volume (K = 1) and

protocol type (K = num. protocols). The per-protocol filter achieves

the highest local legitimate service availability. The filter based on

total traffic volume is too coarse-grained, thus mistakenly blocks

more legitimate traffic. Note finer-grained filters do not always

necessarily offer higher service availability. In reality, many DDoS

attacks exploit random spoofed source address and port numbers,

resulting in insufficient samples for each filter. This raises statistical

biases and reduce the accuracy of each filter. We suggest the EID

users to carefully decide the filter granularity and traffic categories,

e.g., based on the standard DDoS feature engineering.

◦ Scale-out: On-demand hop pruning.As shown in Figure 14b, two
hops usually suffice to fully demotivate adversaries with 100Mbps–

1Tbps attack capacity. The single-hop optimal filters in §3.1 can-

not always demotivate adversaries (e.g., under optimal DDoS with

µa=100Mbps, the bandwidth amplification factor can be more than

1), while three hops are more than necessary. In this case, EID’s

on-demand demotivation will activate the second hop according to

Algorithm 2 to fully demotivate adversaries via traffic divergence.

CPU, memory, and signaling costs: EID incurs negligible sys-

tem overhead for defenders. In our 24-hour tests, the PA-7050 fire-

wall running always retains ≤0.5% CPU and ≤6.2GB with/without

EID. The reason is that, EID reuses the mature and free random-

drop filters in commodity devices. Moreover, EID has no signaling

between nodes by design, thus affordable by large networks.

8 DISCUSSION
EID is our first step toward strategically deterring intelligent, un-

known attacks. Although its results are encouraging, we believe

EID can be further enhanced in at least three aspects:

Extended benefit-cost ratio: The current adversaries’ utility

U (pa,D) in §2 only accounts for the DDoS traffic that bypasses

filters. Beyond that, it is also possible to extend attackers’ utility to

considermistakenly dropped legitimate traffic inU (pa,D) by adding
them to (i) and (ii) in §2. The key is that, EID’s symmetry in Equation

3–8 ensures dropped legitimate traffic volume equals bypassed

malicious traffic µdp
k
dD(k). All results still hold withminor constant

factor updates (e.g., 2η(pd,D) in Theorem 7).

BeyondDDoS: While the experiments in §7 focus on volumetric

DDoS, EID’s core ideas of deterrence apply to other DDoS attacks

(e.g., low rate attacks [49, 50]) since the threat model in §2 generally

holds. Beyond DDoS, EID can be extended to deter other intelligent,

unknown attacks with similar utilities in §2, since multi-hop traffic

divergence offers a generic mechanism to null attack gains.

Beyond successful attacks: The current EID assumes adver-

saries only benefit from successful attacks. In reality, sometimes

adversaries can also gain from unsuccessful attacks (e.g., extorting
victims with fear, uncertainty, and doubt). In this case, EID needs

generalizations to deter these attacks, but its core idea of lowering

gains with multi-hop traffic divergence still holds.
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9 RELATEDWORK
DDoS has been a hot topic in network security for decades; see

[56, 57] for a historical review. Numerous variants of DDoS threats

have been revealed, including the flooding [12, 71], amplification

DDoS [47, 48, 51, 52], low-rate attacks [49, 50], application-layer

DDoS [34], to name a few; more taxonomies are available at [72, 73].

Therefore, diverse DDoS defenses have been proposed atmechanism
and policy level. At the defense mechanism level, state-of-the-art

DDoS defenses mainly adopt scrubbing centers [6, 27, 28], CDNs

[74], rule-based filters [10–12], queue/congestion management [13,

75], pushback [76], spoof detection [15], bandwidth reservation [77],

path traceback [78, 79], destination-defined defense [71, 80], BGP

FlowSpec and Blackholing [81], to name a few. Meanwhile, some

future network architectures are proposed with inherent resiliency

to DDoS, including accountable IP [24, 25], SAVI [14], TVA [26],

SCION [23, 82], ICN [83, 84], XIA [85], and more. EID is orthogonal

to all these efforts: It strategically prevents attackers from launching

intelligent DDoS based on multi-hop traffic divergence.

At the defense policy level, commercial DDoS mitigations [6, 27,

28, 65] mostly adopt rule-based filtering based on prior knowledge

of threat features, which fall short in defending unknown threats

(§3). Advanced mitigations can be realized by machine learning,

such as anomaly detection [16–18, 86–88], reinforcement learning

[34], entropy-based detection [21, 22], neural packet classification

[89], context-specific feature engineering IoT [90], etc. Besides ma-

chine learning, game theory can also be adopted to analyze potential

DDoS threats [91], design mechanisms to incentivize cooperative

defenses [92], and mitigate specific DDoS scenarios such as bitcoin

mining [93] and flooding [35, 94]. But as shown in §3.1, these de-

fenses cannot eliminate strategic attacker’s gains from launching

smart attacks. Instead, EID leverages multi-hop traffic divergence

for a game-theoretic deterrence against intelligent, unknown DDoS.

10 CONCLUSION
We propose EID, a strategic deterrence protocol against intelli-

gent, unknown DDoS via multi-hop traffic divergence. As a game-

theoretical solution, EID deters intelligent attackers by nulling their

benefit-cost ratio, and motivates multi-hop defenders to collaborate.

To achieve so, it exploits traffic divergence to recursively combine

weak (yet divergent) filters from multi-hop defenders to form a

provably strong deterrence against attackers. EID does not require

prior knowledge of exploited vulnerabilities or attack strategies. It

is scalable with distributed on-demand DDoS demotivation, and

incrementally deployable in real networks with negligible costs.

EID is our first step to showcase the promises of deterring intelli-

gent network attacks powered by unknown threats and adversarial

machine learning. Instead of lagging behind numerous new threats

and evolving attack strategies, a more practical solution should

reverse the attacker-defender asymmetry to void the attack bene-

fits. Beyond DDoS and traffic divergence in this work, we believe

more opportunities lay ahead in this direction that could eventually

stimulate endogenous security in future networked systems.
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A PROOF OF THEOREM 1
Proof. Note that

Vi (pa,D) =
∑
k

µip
k
i logD1,i (k) + µap

k
a log(1 − D1,i (k))

For any (a,b) ∈ R2 \ {0, 0}, the function y → a log(y) + b log(1 −

y) achieves it maximum at
a

a+b . So D∗
1,i (k) =

µipki
µipki +µap

k
a
, thus

concluding the proof. □

B PROOF OF THEOREM 2
Proof. Under the optimal filters in Equation 3, the DDoS traffic

that bypasses these filters to reach the victim is:
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and “=” holds if and only if µap
k
a = µnp
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n ,∀k and yields the mixed-

DDoS strategy pa = pn (i.e., adversary fully mimics the legitimate

traffic). Therefore, the total DDoS traffic that bypasses the optimal

defenses to reach the victim is at least
1

2

∑
k min

(
µap

k
a , µnp

k
n

)
. In

this case, we have η(pn,D∗) ≤ maxpa η(pa,D
∗) = η(p∗a,D∗1,n). In

this strategy, as long as legitimate traffic µn > 0, we have at least one

k with µap
k
aD
∗
1,n (k) > 0 and thus η(pn,D∗) > 0, which concludes

our proof. □

C PROOF OF THEOREM 3
Proof. The symmetry of d(p, q) is evident by its definition. The

concavity of d(p, q) is also evident since it is a sum of concave

functions f (x,y) = ( 1x +
1

y )
−1

for any x,y > 0. To prove d(p, q)’s
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bounds and identity, first note d(p, q) ≥ 0. Moreover, for any k
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conclude d(p, q) achieves its maximum if and only if µp = µq and
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For the monotonicity property, we note
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= 1,∀k , i.e. dn−1 = 0. Similarly,

we can prove dn ≤ µn , thus dn ≤ min(dn−1, µn ). By recursion, we

conclude dn ≤ mink µk . □

D PROOF OF THEOREM 4
Proof. We prove Theorem 4 by recursion. When n = 1, Theo-

rem 4 naturally holds according to Theorem 1. Assume Theorem 4

holds for hop 1, 2, ...,n − 1. Consider the n-th hop. Following Theo-

rem 1 and the analysis in Section 5.1, its local optimal DDoS filter
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which retains the same form. So by recursion, we conclude Theo-

rem 4 holds. □

E PROOF OF THEOREM 5
Proof. Equation 7 implies D∗n (k) decreases monotonically with

dkn , and limdkn→0
D∗n (k) = 0,∀k . So the DDoS traffic µap

k
aD
∗
n (k)

decreases with monotonically dkn and limdn→0
µap

k
aD
∗
n (k) = 0,∀k .

This implies limdn→0
U (pa,D∗n) = 0 based on the threat model in

§2. Since η = U (pa,D∗n)/µa and the adversary’s attack capacity

µa is independent of all dkn , we conclude η also decreases with

monotonically dkn and limdn→0
η(pa,D∗n) = 0.

Moreover, Theorem 5 impliesdn−1 ≥ dn and “=” holds iff.dn−1 =
0, so d1 ≥ d2 ≥ ... ≥ dn and limn→∞ dn = 0 since dk ≥ 0,∀k . This
implies limn→∞U (pa,D∗n) = 0 and thus limn→∞ η(pa,D∗n) = 0. □

F PROOF OF THEOREM 6
Proof. From Theorem 5, the adversary’s optimal DDoS strategy

satisfies limdn→0
µa = 0 and limn→∞ µa = 0. Then Equation 3 im-

plies optimal local filter limdn→0
D∗
1,m (k) = 1 and limdn→0

D∗
1,m (k) =

1. Each local filter’s precision, recall and accuracy equal to D∗
1,m (k)

as proved in §3.1, thus concluding our proof. □

G PROOF OF LEMMA 1
Proof. Since η(pa,D) =

U (pa,D)
µa and attack capacity µa is given,

the adversary’s optimal strategy forU (pa,D) also optimizesη(pa,D).
So we focus onU (pa,D) in the following proof. When all hops will

adopt EID’s optimal filters, the accumulative optimal filter D∗n (k) is
shown in Theorem 4. Therefore, the adversary’s attack gain is

U (pa,D) =
∑
k

ck · µap
k
aDn (k) =

∑
k

ck
µap

k
a · dnq

k
n

µap
k
a + dnq

k
n

So maximizing thisU (pa,D) implies to solve the following con-

straint non-linear optimization:

max

pa
U (pa,D)

s.t.

∑
k

pka = 1

0 ≤ pka ≤ 1,∀k

This nonlinear optimization can be solved by applying the classi-

cal Karush-Kuhn-Tucker (KKT) conditions [95]. Consider the La-

grangian for maxpa U (pa,D) with latents λ, a, b:

L(pa, λ, a, b) = U (pa,D) − λ

(∑
k

pka − 1

)
+

∑
k

ak (p
k
a − 1) −

∑
k

bkp
k
a

Then the optimal DDoS policy pa satisfies

∂L

∂pka
= ck µa

(
ωnq

k
n

ωnq
k
n + (1 − ωn )p

k
a

)
2

+ ak − bk − λ = 0,∀k (19)

ak (p
k
a − 1) = 0,bkp

k
a = 0,∀k (20)∑

k

pka = 1 (21)



From Equation 20, there are 4 cases for each k :

• Case 1: ak , 0,bk , 0. This is impossible for any pka in Equation

20.

• Case 2: ak = 0,bk , 0. Equation 20 implies pka = 0.

• Case 3: ak , 0,bk = 0. Equation 20 implies pka = 1, which im-

mediately implies p
j
a = 0,∀j , k . Then U (qa,D

∗) =
dnqkn ·µack
dnqkn+µa

. To

maximizeU (qa,D
∗), the adversary should choose k that maximizes

dnqkn ·µack
dnqkn+µa

, which results in the simple DDoS policy in Theorem 1.

• Case 4: ak = 0,bk = 0. Then Equation 20 holds for any pka settings.

Meanwhile, Equation 19 implies(
ωnq

k
n

ωnq
k
n + (1 − ωn )p

k
a

)
2

=
λ

ck µa
,∀k

Then pka =
ωnqkn
1−ωn (

√
ck µa/λ − 1). Since

∑
k p

k
a = 1, we have∑

k

pka =
ωn

(1 − ωn )

√
µa
λ

∑
k

qkn
√
ck −

ωn
(1 − ωn )

= 1

So

√
λ =
√
µaωn

∑
k q

k
n
√
ck =

√
µaωnEqn

√
c and therefore

pka =
ωnq

k
n

1 − ωn

( √
ck

ωnEqn
√
c
− 1

)
which implies mixed DDoS attack in Theorem 1. Note that as a

probability distribution, we mandate 0 ≤ pka ≤ 1,∀k . This con-

straint implies ωnEqn
√
c ≤

√
ck ≤ ωn (1 +

1−ωn
ωnqkn

)Eqn
√
c which

results in the condition in Equation 12. Once this condition holds,

we apply this policy toU (qa,D
∗) and get

max

qa
U (qa,D

∗) = dn
∑
k

qknck − dnωn

(∑
k

qkn
√
ck

)
2

= dnEqn [c] − dnωn (Eqn [
√
c])2

thus concluding the proof. □

H PROOF OF THEOREM 7
Proof. We show that even the optimal reflective DDoS policy

in Theorem 1 holds these bounds, thus demotivating all reflective
DDoS attacks. For the simple DDoS policy in Theorem 1, we have

max

pa
U (p∗a,D

∗) =
dnq

k
n · µack

dnq
k
n + µa

≤
dnµa

dn + µa
ck ≤ dnck

since maxpa U (p
∗
a,D∗) increases monotonically with qkn ∈ [0, 1]

and
µa

dn+µa
≤ 1. Note limdn→0

maxqa U (p
∗
a,D∗) = 0, which is con-

sistent with Theorem 5.

For the mixed DDoS policy in Theorem 1, we have

max

pa
U (p∗a,D

∗) = dnEqn [c] − dnωn (Eqn [
√
c])2 ≤ dnEqn [c]

Similar to simple DDoS attack, limdn→0
maxqa U (p

∗
a,D∗) = 0, which

is consistent with Theorem 5. □
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