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Abstract—Satellite routers in emerging space-terrestrial inte-
grated networks (STINs) are operated in a failure-prone, inter-
mittent and resource-constrained space environment, making it
very critical but challenging to cope with various network failures
effectively. Existing resilient routing approaches either suffer
from continuous re-convergences with low network reachability,
or involve prohibitive pre-computation and storage overhead due
to the huge amount of possible failure scenarios in STINs.

This paper presents STARCURE, a novel resilient routing
mechanism for futuristic STINs. STARCURE aims at achieving fast
and efficient routing restoration, while maintaining the low-latency,
high-bandwidth service capabilities in failure-prone space envi-
ronments. First, STARCURE incorporates a new network model,
called the topology-stabilizing model (TSM) to eliminate topological
uncertainty by converting the topology variations caused by
various failures to traffic variations. Second, STARCURE adopts
an adaptive hybrid routing scheme, collaboratively combining
a constraint optimizer to efficiently handle predictable failures,
together with a location-guided protection routing strategy to
quickly deal with unexpected failures. Extensive evaluations driven
by realistic constellation information show that, STARCURE can
protect routing against various failures, achieving close-to-100%
reachability and better performance restoration with acceptable
system overhead, as compared to other existing resilience solutions.

I. INTRODUCTION

Thanks to emerging innovations in the aerospace industry,
in the past few years we have witnessed the rapid evolution
and deployment of satellite Internet constellations (SIC) in low
earth orbits (LEO), such as SpaceX’s Starlink [1] and Amazon
Project Kuiper [2]. Such broadband constellations facilitate the
construction of space-terrestrial integrated networks (STINs),
regarded as an important direction of the next generation of
Internet, promising to realize pervasive, high-throughput, low-
latency network services for terrestrial customers [3], [4], [5].

Towards the goals above, network routing plays a critical role
in the service quality of STINs, since it not only determines
the reachability between any two communication ends in the
network, but also affects the achievable network performance
perceived by customers. Ideally, a STIN routing mechanism
is expected to simultaneously: (i) maintain high network
reachability for geo-distributed customers during any period
of operation; and (ii) provide low latency and high throughput
paths for delivering various Internet traffic over the STIN.

However, due to a series of unique characteristics of LEO
satellites, achieving highly available and performant routing is
still challenging in STINs. First, the backbone network of a
STIN is exposed in outer space, suffering from risks such as
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debris collisions [6], [7] and radiation hazards [8] etc. Second,
LEO satellites are constantly moving at a high velocity in their
orbits, and such continuous dynamics can lead to frequent
inter-visibility changes and link disruptions. Finally, emerging
mega-constellations are constructed by shorter-lifespan small
satellites, which significantly reduce the production cost, but
are inherently more brittle and prone to failures [9]. All factors
above can result in node or link failures in a STIN. How should
STIN service providers cope with various network failures
effectively in such a failure-prone, intermittent environment?

Today’s widely deployed Internet routing protocols, such
as OSPF and ISIS, deal with failures in a reactive manner,
relying on global link state advertisements to discover network
topology changes and compute correct routing tables. However,
reactive solutions have to experience a convergence period
jeopardizing routing stability. Since network failures occur
frequently and constantly in STINs, directly applying such
reactive solutions could lead to incessant routing convergence,
resulting in very poor network reachability in STINs.

As alternative solutions, many existing works propose to
tackle network failures in a proactive manner and accomplish
convergence-free routing [10], [11], [12], [13], [14], [15],
[16]. The underlying idea of these efforts is to pre-compute
the correct routing tables for possible failure scenarios in
advance, and then perform fast re-routing once a real failure
happens. However, it is also difficult to directly apply such
proactive methods to a STIN environment for two main reasons.
First, the combination of huge constellation scale, constant
LEO dynamics and the complex error-prone environment
jointly create a significantly large amount of possible failure
scenarios and topology variations. Pre-computing decisions for
all these possible scenarios can involve prohibitive computation
overhead. Second, satellites are resource-constrained, and
storing too many backup routing tables for all failures at each
node can easily overwhelm the storage system of satellites.

In this paper, we present STARCURE, a novel resilient routing
mechanism for emerging STINs. STARCURE targets at achiev-
ing fast and efficient routing restoration while maintaining the
low-latency, high-bandwidth service capabilities for STINs in
error-prone, constantly-dynamic, resource-constrained space
environments. Specifically, STARCURE incorporates two key
techniques to cope with various network failures effectively.

First, STARCURE adopts a new network model, called
topology-stabilizing model (TSM) (§IV-B) to convert the
topology variations under various failure scenarios to traffic
variations, and formulate the resilient space routing problem
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upon a stable network topology. TSM exploits two important
insights obtained from STINs: (i) a long-duration traffic demand
affected by a predictable failure can be modeled as a series
of consecutive demands issued by different source-destination
pairs; and (ii) an unexpected link failure can be viewed as a
burst traffic fully exhausting that link. Therefore, with TSM,
STARCURE converts the original resilient routing problem
which requires pre-calculating routing decisions for (nearly) an
infinite number of topology variations, to a dynamic routing
scheduling problem upon a stable logical network topology.

Second, to solve the above dynamic routing problem in
an efficient and practical manner, STARCURE incorporates an
adaptive hybrid routing scheme (§IV-C). While TSM enables
us to solve the resilient routing problem upon a stable topology,
there still remains two practical issues that have to be addressed.
On one hand, the conversion by TSM significantly increases
the traffic variations and makes it challenging to use standard
linear programming to solve the problem efficiently. On the
other hand, iterating all possible traffic demands generated
by unexpected failures in advance for pre-calculation can still
involve significant computation overhead. To overcome these
practical problems, our hybrid routing scheme combines a
dynamic-tolerant basic routing to efficiently adapt and handle
predictable failure with guaranteed network performance,
together with a location-guided protection routing to quickly
deal with unexpected failures and maintain routing continuity.

To validate the feasibility and effectiveness of STARCURE,
we implement a STARCURE prototype, and build a hardware-
in-the-loop testbed which can create a large-scale simulated
STIN environment to load real routing software and network
traffic for experimentation (§V). Extensive evaluations based
on realistic constellation information, traffic pattern and various
failure events demonstrate that, as compared to other resilience
solutions, STARCURE can protect routing against both common,
predictable failures and rare, unexpected failures for different
constellation topologies, achieving close-to-100% network
reachability and better performance after the restoration.

Summarily, the contributions of this paper can be concluded
as follows: (i) we formulate the resilient and performant space
routing problem, and quantitatively highlight the technical chal-
lenges caused by the combination of LEO dynamics and failure
uncertainty (§III); (ii) we present STARCURE, a novel routing
mechanism that incorporates TSM and an adaptive hybrid
routing scheme to achieve resilient and performance-guaranteed
routing in failure-prone STINs (§IV); (iii) we implement a
STARCURE prototype (§V) and conduct extensive evaluations
driven by realistic constellation information to demonstrate the
feasibility and effectiveness of our solutions (§VI).

II. PRELIMINARIES FOR FUTURISTIC SPACE-TERRESTRIAL
INTEGRATED NETWORKS (STINS)

A. STINs Quick Primer

Figure 1 illustrates a typical architecture of STINs in brief,
which integrates two major components to provide Internet
service from space for terrestrial users: (i) a space backbone
network, which consists of hundreds to thousands of LEO

② Ground facility network (distributed ground stations)

Ground-
Satellite 
Link(GSL)

Inter-Satellite Link(ISL) ① Space backbone network (satellite routers)

Traffic over STINs

Fig. 1: Space-terrestrial integrated networks (STINs) in brief.

broadband satellites (i.e., satellite routers). These satellites can
be equipped with high-speed ground-satellite links (GSL, e.g.,
Ka/Ku/V-band radio links) and inter-satellite links (ISL, e.g.,
laser communication links [17]) to construct a high-capacity
backbone network to forward data in space; (ii) a ground
facility network, including a large number of geo-distributed
ground stations (and satellite terminals) to enable terrestrial
users and content providers to access the space backbone. The
entire STIN runs certain space routing mechanisms (e.g., [3],
[14], [18]) to forward network traffic and establish end-to-
end communications. Collectively, integrating wide-coverage
satellite constellation and high-speed communication links,
emerging STINs promise to provide pervasive, high-throughput
and low-latency Internet services globally [4], [19].

B. Failure-Prone STIN Environments

Unlike conventional terrestrial networks where the backbone
is deployed in a sealed, protected circumstance, the space
backbone of a STIN is exposed in a public, uncontrollable
environment. Network failures, including node and link failures,
are prone to happen due to a series of unique characteristics.
LEO dynamics. LEO satellites fly in low orbital altitude (e.g.,
500-1200km [1], [2]) to enable low propagation latency for
space-ground communication. These satellites move at a high
orbital velocity relative to the earth surface. Due to the LEO
dynamics, ground-satellite links in a STIN can experience
frequent disruptions and re-associations, resulting in frequent
network-wide topology fluctuations. A recent investigation [5]
has quantitatively shown that the average space-ground link
churn interval could be as low as tens of seconds in Starlink.
Environmental risks in complex outer space. Satellites work-
ing in the outer space suffer from a number of environmental
risks such as debris collision and radiation hazard etc. For
example, Kessler Syndrome [6] is a phenomenon in which
the amount of junk in orbit around earth reaches a threshold
where it creates more and more space debris, causing serious
failures for satellites. On February 10, 2009, an inactive Russian
communications satellite, collided with an active commercial
communication satellite operated by Iridium [7]. More recently,
a geomagnetic storm doomed 40 Starlink Internet satellites [8].
Small satellite vulnerability. Emerging STINs are built upon
small satellites. They involve much lower cost compared to tra-
ditional monolithic satellites [20], require shorter manufacturing
period, and can use available commercial-off-the-shelf (COTS)
technologies to quickly build their on-board systems. On one
hand, such a “build it as cheap as possible” principle indeed
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accelerates the construction and deployment of STINs. But on
the other hand, due to the reduced cost, small satellite systems
are more vulnerable to failures [9], and typically have a shorter
lifespan and weaker radiation resistance. For example, after its
first launch in 2019, SpaceX’s Starlink has already launched
over 3,300 small satellites to space as of the date of Decemeber,
2022, but 353 (∼11%) of the deployed satellites have become
decaying or deorbited right now [21].

In a nutshell, STINs are operated an error-prone, constantly-
dynamic environments. All factors above can lead to network
failures. Note that failures caused by predictable LEO dynamics
are common, frequent and transient. Other failures due to
unexpected factors such as collisions are rare but can lead to
permanent outright errors. We denote the above two classes of
failures as predictable and unexpected failures respectively.

III. UNDERSTANDING THE PROBLEM

A. Problem Formulation

Network topology. A STIN contains a space backbone and a
number of distributed ground stations. Let S = {s1, s2, ..., sP }
denote the set of all satellites in the STIN, with |S| = P
satellites in total. Assume that there are Q ground stations
which connect to the space backbone for ground-space com-
munication, and U = {u1, u2, ..., uQ} denotes the set of all
ground stations. V = S ∪ U denotes the set of all STIN nodes.

In addition, LEO satellites inter-connect to each other via
inter-satellite links (ISL), and connect to ground stations via
ground-satellite links (GSL). A laser ISL enables point-to-point
communication for two broadband satellites at the same time,
while a radio GSL allows a satellite to simultaneously connect
to many ground stations sharing the entire GSL capacity. Let
(i, j) denote an available link in the STIN. In practice, both
ISLs and GSLs are bidirectional, and let L denote the set of
all available links. Therefore, in a failure-free scenario, a STIN
can be formulated as a graph G = (V,L).
Network failures. Essentially, a network failure (e.g., a node
or a link failure) causes a topology variation, and consequently
affects the network reachability and performance of STINs.
Since a node failure can be presented as all its related links
becoming unavailable, we focus on the link failures in our
formulation. Assume time is slotted, and denote the operation
period as T = {t1, t2, t3, ...}. A failure event k that occurs in
slot t (e.g., a certain set of ISLs/GSLs become unavailable)
triggers a network topology variation, and can be described by
a function ϕkt : Lt → Lt+1. In other words, the failure event k
changes the available link set from Lt in slot t to Lt+1 in slot
t+1. We use Φ = {ϕkt |t ∈ T } to represent the set of all failure
events. Considering that those topology variations are caused
by continuous network failures, we extend the above network
graph in temporal dimension, and use Gall = {Gt|t ∈ T } to
present all time-varying topology variations generated by Φ.
Gt = (V,Lt) describes the network graph in slot t.
Traffic demands. STINs can carry Internet traffic for terrestrial
users. Let fab = {stfab, et

f
ab, d

f
ab} denote a traffic demand f

from node a to b. Specifically, fab starts at time slot stfab,
ends at etfab, and its bandwidth requirement is dfab. We define

F = {fab|a, b ∈ V} as the set of all traffic demands. Let bij
denote the capacity of link (i, j) in the i→ j direction. There
are many existing methods for network operators to estimate
traffic matrices F in their operational networks [22], [23].
Routing scheme. Let binary variables τab(i, j, t) denote
whether the traffic demand fab from a to b is carried by link
(i, j). In particular, τab(i, j, t) = 1 indicates that traffic from a
to b goes through the link (i, j) in slot t. Therefore, an available
routing for traffic demand fab, denoted as rtab in slot t, can
be described as a set of τab(i, j, t), i.e., rtab = {τab(i, j, t)},
satisfying the following properties, where ∀i, j, γ ∈ V,∀t ∈ T :

∑
w∈V

τγw(i, j, t)−
∑
v∈V

τvγ(i, j, t) =


1 γ = a

− 1 γ = b

0 otherwise

, (1)

∑
a,b

τab(i, j, t) · dfab ≤ bij ,∀a, b ∈ V. (2)

Eq.(1) indicates flow conservation at any intermediate node,
and guarantees that there is an available path from source a to
destination b. Eq.(2) ensures that all traffic carried by a certain
link (i, j) will not exceed its capacity bij . We further denote
Rt = {rtab|a, b ∈ V, t ∈ T } as an available routing scheme in
slot t, which includes all available routes for traffic demand
F under the network graph Gt.
Performance guarantees. Note that in an operational STIN,
in addition to the basic constraints described above, STIN
operators may also require other performance guarantees. We
consider two performance metrics critical for many routing and
traffic engineering systems: (i) maximum link utilization (MLU)
among all links during the operation period, which can be
formulated as:

MLU = max
∑

a,b∈V d
f
ab · τab(i, j, t)
bij

,∀t ∈ T ,∀(i, j) ∈ Lt,

(3)
and (ii) latency requirement Dab, which indicates that the one-
way delay of traffic demand fab is expected to be lower than
Dab. In particular, Dab can be set to α∗Dsp

ab , where Dsp
ab is the

latency of the shortest path between a and b, and coefficient
α ≥ 1. Ideally, a resilient routing mechanism is expected to
quickly react to failures and find an available congestion-free
routing for all traffic demands F (i.e., satisfying Eq.(1) and
Eq.(2)), with minimum MLU (i.e., creating more headroom to
avoid congestion in the presence of unexpected traffic shifts
and outright failure) and bounded latency.
[P1]: resilient space routing problem (RSRP). With the
definitions above, we thus formulate RSRP as follows:

[P1] Objective: min∀(i,j)∈V,∀t∈TMLU, (4)

subject to:
∑

∀(i,j)∈Lt

τab(i, j, t) · lij ≤ Dab,∀fab ∈ F , (5)

∑
a,b

τab(i, j, t) · dfab ≤MLU,∀a, b ∈ V, and Eq.(1),Eq.(2),

(6)
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where lij is the latency of link (i, j),
∑

∀(i,j)∈Lt
τab(i, j, t) ·

lij is the path one-way latency for traffic fab in slot t ∈
[sfab, e

f
ab). Assume there is a sequence of network failures Φ

in the STIN, for each failure event ϕkt−1 ∈ Φ that changes
the network topology to Gt in slot t, the routing system needs
to deal with the failure by quickly solving the above integer
linear programming problem (ILP) upon Gt and computing an
available routing Rt presented by variables τab(i, j, t).

B. Limitations of Prior Resilience Solutions

The problem formulation above reveals two fundamental
stages for routing restoration: (i) failure discovery, through
which each node obtains the correct network topology Gt when
a failure event happens; and (ii) routing re-calculation, by
which each node correctly generates and applies new routing
tables based on the current topology. The network community
has a long history studying the resilient routing techniques,
and existing efforts can be classified into two main categories,
depending on how they perform these two stages.
Reactive routing restoration. Existing widely deployed
Internet routing protocols, such as OSPF [24] and ISIS [25],
discover failures and restore routing in a reactive manner. In
particular, each distributed node periodically exchanges link
state to its neighbors to get the global network topology. If a
failure happens, they perform global message exchanges and
routing re-calculation. However, reactive restoration solutions
inevitably experience a routing re-convergence period, after
the failure has been detected, and before all routers learn
about such change. During this period, the routing state might
be inconsistent. Note that failures such as GSL disruptions
caused by LEO dynamics are common and frequent in a STIN
environment. Thus, existing reactive methods may suffer from
frequent re-convergence (e.g., in every tens of seconds) and
result in routing instability and poor network reachability (e.g.,
only ∼60% in some situations as we will show in §VI).
Proactive routing restoration. To alleviate the impact of
routing re-convergence, many existing approaches propose
proactive routing restoration strategies [26], [11], [12], [13],
[14], [15], [16]. These proactive solutions estimate the pos-
sible failure scenarios, and pre-compute the backup routing
offline. Once a failure occurs, the affected router searches the
corresponding backup routing for current scenario, and quickly
applies it in the online stage to accomplish fast restoration.

However, the effectiveness of existing pre-computation-based
proactive solutions is inherently limited in large-scale, high-
dynamic STINs. Although the failures caused by periodical
satellite movements are predictable, all possible topology
variations are jointly generated by the combination of both
predictable and unexpected failures. To deal with the failure
uncertainty, a proactive resilience solution has to pre-compute
backup routes for all failure scenarios. In addition, due to
the large constellation size and failure-prone environment,
there may be too many possible failure scenarios that need to
pre-compute. For example, assume that the predictable LEO
dynamics generate M possible failure-free network snapshots
of a STIN, and each snapshot contains |Lm| links. Assume

the STIN needs to cope with up to N unexpected link failures.
Combining predictable and unexpected failures, there will be∑M

m=1

∑N
p=1

(|Lm|
p

)
failure scenarios in total. Taking SpaceX’s

Starlink as an example. Its |Lm| is more than 3000 and
the topology regularly changes in tens of seconds. Resisting
against an unexpected solar storm [8] which doomed 40
satellite at once, requires to pre-compute routing decisions
for a significantly large amount of failure scenarios which
can easily overwhelm the CPU/memory of the routing system.
Moreover, even if we can obtain pre-computed routes for all
failures, it is also difficult to cache all backup routing tables
in the storage-constrained satellites.
Takeaways. Collectively, due to the combination of LEO
dynamics and failure-prone space environment, it is challenging
for existing resilient solutions to effectively handle failures in
STINs. They either involve frequent re-convergence periods
resulting low network reachability, or require significant pre-
computation overhead which could be unacceptable in practice.
This important fact thus motivates us to design STARCURE,
a new space routing mechanism that achieves resilience and
guaranteed performance in emerging STIN environments.

IV. THE STARCURE DESIGN

A. Mechanism Overview

Core ideas. The design of STARCURE incorporates two core
ideas. First, we design a new network model, called topology-
stabilizing model (TSM) (§IV-B) to convert the topology varia-
tions caused by various failures in a STIN, to traffic variations
upon a stable logic topology. TSM is designed based on a
key insight that a long traffic demand disrupted by predictable
failures can be presented by a sequence of short demands, and
unexpected failures can be modeled as a set of burst traffic
demands fully filling corresponding failed links. Second, to
efficiently cope with a large number of highly dynamic traffic
demands converted by TSM, we propose an adaptive hybrid
routing scheme (§IV-C), integrating a constraint optimizer
to route predictable traffic with near-optimal performance,
and a location-guided protection routing algorithm to route
unexpected traffic with bounded performance.
Work phase. Figure 2 plots an example illustrating how
STARCURE copes with various failures. In this example, there
are two ground stations and seven satellites in the network. The
entire topology changes due to two predictable failures in t1,
t3, and one unexpected failure in t2. There is a traffic demand
from GS1 to GS2. Specifically, STARCURE achieves resilient
and performance-guaranteed space routing as follows. First, by
invoking TSM, STARCURE converts the time-varying STIN
physical view to a stable logical view, together with a highly-
dynamic traffic matrix upon it. Second, to tackle predictable
failures which are described by a large number of predictable
traffic demands, STARCURE leverages a basic routing scheme
to pre-compute routing decisions offline with guaranteed
performance, and configure routing decisions online in case
of predictable failures (e.g., space-ground handovers). Note
that because TSM has eliminated the topological uncertainty,
the basic routing here only needs to solve an LP problem on
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S1 S2 S3 S4

GS1 GS2

S5 S6 S7
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failure

t3: predictable 
failure

S1 S2 S3 S4
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V1 V2 V3 V4

S1 S2 S3 S4

S5 S6 S7

V1 V2 V3 V4

S1 S2 S3 S4

S5 S6 S7

V1 V2 V3 V4

Basic Routing 
(pre-computed)

Protection Routing 
(real-time)

TSM 
View

TSM 
View

TSM 
View

Fig. 2: An example illustrating the work phase of STARCURE.

a single topology in the offline stage. Third, if unexpected
failures happen (e.g., t2 in Figure 2), on one hand, the affected
node immediately switches to its protection routing strategy,
and fast reroutes affected traffic based on its local information
to maintain routing availability. On the other hand, STARCURE
notifies the unexpected failure to its basic routing strategy.
STARCURE’s basic routing then updates the traffic matrix via
adding the burst traffic generated by the unexpected failure, and
re-computes routing decisions with performance constraints.
Finally, when new routing decisions have been generated by the
basic routing, STARCURE switches back to the basic routing
strategy again (e.g., t3 in Figure 2).

B. Topology-Stabilizing Network Model
As the first step to solve the resilient space routing problem,

we design a new network model, called “topology-stabilizing
model” (TSM) to describe a dynamic topology through a stable
logical view. TSM incorporates two surjection functions. First, a
graph surjection ψ : GT → Ĝ which converts the time-varying
GT to a stable logical view Ĝ. Second, a traffic surjection
ω : F → F̂ that describes the traffic demand on the stable Ĝ.
Stabilizing the network topology. Let GT denote a set of
sequential network snapshots generated by failure events Φ. As
illustrated in Algorithm 1, ψ(GT ) = Ĝ is calculated as follows.
First, to create the vertex set V̂ in Ĝ, for each satellite node si ∈
S in GT , TSM creates a mirror in V̂ . In addition, TSM creates
a virtual terrestrial node, denoted as vsi, for each satellite si
in V̂ (line 3-4). Each vsi presents the set of all ground stations
that connect to si in certain time slots. Thus, assume that there
are P satellites in the original GT , and then Ĝ contains 2P
nodes in total. Second, to build the link set L̂ in Ĝ, for each si
and its corresponding vsi, establish a link (si, vsi) presenting
the ground-satellite communication for satellite si (line 6-7).
The link capacity of (si, vsi) is set equal to the GSL capacity
of satellite s. In addition, mirror satellites in V̂ inter-connect
to each other following their physical connectivity pattern (line
9). For each ISL in GT , make a copy of it in Ĝ, i.e., each
mirror of si in Ĝ connects to two front and back neighbors
in the same orbit, and connects to other two left and right
neighbors in adjacent orbits. Note that vsi may map to ∅ if
si does not connect to any ground stations in some slots. In

Algorithm 1: Topology Stabilization (ψ).
Input : Time-varying physical view GT = (V,LT ).
Output : Stabilized logic view Ĝ = (V̂, L̂).

1 V̂ ← ∅, L̂ ← ∅ /* (1) initialization. */ ;
2 for satellite s ∈ S in V do
3 vs←createVN(s) /* create a virtual node. */ ;
4 V̂ .addVertex(s), V̂ .addVertex(vs);
5 /* (2) create a link in L̂ and set its capacity as the

GSL capacity of satellite s. */ ;
6 (s, vs)←createLink(GSL_capacitys) ;
7 L̂.addLink((s, vs)) ;

8 /* (3) add a copy of each ISL in GT to Ĝ. */ ;
9 L̂.addLink(∀(i, j) ∈ LT , i, j ∈ S);

10 Return Ĝ = (V̂, L̂).

these cases where vsi = ∅, (si, vsi) still exists, but no traffic
will go through it.

After this conversion, ψ(GT ) = Ĝ is a stable graph for
two reasons. First, recent mega-constellations like Starlink and
Kuiper follow Walker Delta constellation [27] design, in which
inclined orbits and satllites are evenly spaced. Satellites in
the same orbital shell (e.g., the first-shell 1584 satellites of
Starlink) fly at the same altitude with the same velocity and
thus the relative positions between adjacent satellites are stable.
Second, because vsi refers to a virtual presentation of the set
of ground stations connected to si in certain slots, there is
always a stable logical link (si, vsi) in Ĝ, although vsi maps
to different ground stations physically in different time slots.

Converting fluctuating topologies to fluctuating traffic. First,
failures caused by predictable, periodical satellite movements
can be estimated based on orbital information. For example,
space-ground disconnections and reconnections can be typically
estimated in advance with the knowledge of the satellite’s
velocity and orbital position. Thus, TSM splits a long-duration
traffic demand affected by such predictable failures into a
bunch of sequential short-duration demands. Second, failures
due to random, unexpected incidents in the complex space
environment (e.g., solar storm or cosmic radiation) can be
modeled as burst virtual flows that fully exhaust the link.

Specifically, the traffic surjection ω(F) = F̂ is illustrated
in Algorithm 2. First, for predictable failures, TSM converts
all affected long flows in F to a bunch of sequential short
flows in corresponding F̂. Assume that fab ∈ F is a traffic
demand from a to b during the period [sfab, e

f
ab), and the flow

of fab is affected by predictable GSL disruptions. Due to link
layer handovers, the logical position of a and b change in Ĝ
during [sfab, e

f
ab). TSM thus converts fab to a sequence of short

flows between these two pairs of virtual terrestrial nodes in
corresponding time slots (line 2-7). Second, for unexpected
failures, TSM describes them as a burst traffic demand in the
failed link. Assume a link (i, j) suffers from a failure during
the period [ts, te). TSM describes a link failure by creating a
burst flow fburst = {ts, te, bij} with the traffic demand equal
to the link capacity bij (line 9-11). To ensure that the burst
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Algorithm 2: Dynamic Traffic Conversion (ω).

Input : Original traffic matrix F, stabilized graph Ĝ.
Output : Converted traffic matrix F̂ upon Ĝ.

1 F̂ ← ∅ /* (1) initialization. */ ;
2 for each traffic demand fab ∈ F do
3 for each slot t from sfab to efab do
4 /* (2) find the converted vertex of the original

src/dst in Ĝ, and create a new demand.*/ ;
5 s← find(Ĝ, a, t), d← find(Ĝ, b, t);
6 fsd ←createDemand(t, (t+ 1), dfab);
7 F̂.addDemand(fsd);

8 /* (3)create virtual demands for unexpected failures. */ ;
9 for each unexpected failure in (i, j) during [ts, te) do

10 fburst ←createDemand(ts, te, bij);
11 F̂.addDemand(fburst);

12 Return F̂. /* return converted traffic matrix. */

traffic is routed over link (i, j), we set the latency requirement
of fburst equal to that link latency lij .

Figure 3 shows a concrete example of TSM conversion.
Assume that a simplified STIN contains three LEO satellites
in the same orbital altitude (S1, S2, S3) and two ground
stations (GS1, GS2). The space-ground connectivity changes
from (GS1, S1), (GS2, S2) in slot 1 to (GS1, S2), (GS2, S3)
in slot 2 due to the LEO dynamics and link layer handovers.
In addition, an unexpected ISL failure occurs in (S1, S2) in
slot 2. The entire physical topology accordingly changes from
slot 1 (i.e., [t1, t2)), to slot 2 (i.e., [t2, t3)) due to such failures.
Assume there is a traffic demand fGS1,GS2 = {t1, t3, D} from
GS1 to GS2 during [t1, t3). TSM creates a virtual terrestrial
node for each satellite (i.e., V1, V2, V3), and accordingly splits
the traffic demand affected by the predictable failure into
two sequential traffic fv1,v2 = {t1, t2, D} and fv2,v3 =
{t2, t3, D}. For the unexpected failure in t2, TSM generates
a burst traffic demand fS1,S2 = {t2, t3, Cap(S1, S2)}, where
Cap(S1, S2) = bS1,S2

is the link capacity of (S1, S2).

With TSM, the original resilient space routing problem (P1),
which requires pre-computing routing decisions for a signif-
icantly large number of possible topologies in GT , is thus
converted to a dynamic routing scheduling problem (P2): given
a stable network Ĝ, a time-varying traffic matrix F̂, finding
the available dynamic routing schemes RT satisfying the
performance constraints formulated in Eq.(1-2), and Eq.(5-6).

TSM eliminates the topological uncertainty caused by the
combination of LEO dynamics and uncertain failures. However,
completely solving P2 still requires to cope with two additional
issues. First, since TSM converts topology dynamics to traffic
dynamics, the size of traffic matrix F̂ significantly increases,
making it still challenging to directly apply conventional linear
programming (LP) solvers to solve the problem. Second, the
traffic matrix F̂ still contains unpredictable demands, and thus
in practice it is challenging to get the entire F̂ in advance
to calculate the optimal solution. We design a new adaptive

Time slot 1

S1 S2 S3

GS1 GS2

Traffic Demands Conversion 

Time slot 2

S1 S2 S3

GS1 GS2

S1 S2 S3

V1 V2 V3

GS1GS2, {t1, t3, D}

V1V2, {t1, t2, D}
V2V3, {t2, t3, D}

S1S2,  {t2,t3, Cap (S1,S2)}

Graph Conversion

t1 t2 t3

Fig. 3: Converting various failures to dynamic traffic .

hybrid routing scheme to solve P2 effectively and efficiently.

C. Adaptive Hybrid Resilient Routing

Our adaptive hybrid resilient routing integrates two strategies
to collaboratively handle highly-dynamic traffic due to failures.
We split F̂ = F̂pr+F̂up, where F̂pr and F̂up are predictable/un-
expected traffic demands respectively. First, STARCURE adopts
a basic routing strategy which leverages a constraint optimizer
to pre-compute (offline) and configure (online) routing de-
cisions for variable traffic F̂pr caused by common, transit
and predictable failures with guaranteed performance. Second,
STARCURE incorporates a protection routing strategy that
exploits location-guided fast rerouting to quickly deal with
burst traffic F̂un caused by unexpected failures locally. Once
a rare, unanticipated failure happens, STARCURE immediately
invokes the protection routing to reroute affected traffic, and
simultaneously triggers re-calculation in the basic routing.
Finally, once new routing decisions have been computed by
the basic routing based on the new traffic matrix, STARCURE
switches back to the basic routing strategy.

1) STARCURE’s basic routing strategy: Directly solving
P2 with F̂pr by conventional ILP solvers still has difficulties,
since TSM splits long-duration traffic demands into multiple
short demands in different time slots. We adopt a constraint
optimizer with two optimizations described as follows.
Path filtering. Due to the large size of Ĝ and F̂T , there are too
many variables τab(i, j, t) constructing a large solution space
to explore. We design a heuristic to shrink the solution space.
Our heuristic is based on the insight that in a STIN, to attain
the goal of low latency (i.e., Eq (5)), satellites that are too far
away from the ground projection between a communication
pair a→ b is not expected to carry fab. We thus estimate the
path stretch pijab between a and b if the demand fab is carried
by a certain link (i, j), by summing up the great circle distance
between a and i, the length of link (i, j), and the great circle
distance between b and j. We do not consider link (i, j) to
carry traffic demand fab, if the estimated pijab ≥ β · Dab. By
this method, we eliminate many variables of τab(i, j, t).
Merging traffic demands. Converting the original traffic
matrix F into F̂ increases the matrix size and also imposes a
large number of additional constraints in the ILP problem. We
reduce the number of such constraints by merging the traffic
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Algorithm 3: Location-Guided Protection Routing.
Input : A set of received data packets P .
Output : The outgoing link for each packet (if any).

1 for each pktdst ∈ P do
2 pktdst.protection==TRUE;/* pktdst to dst. */ ;
3 if available_links - pktdst.in_link == ∅ then
4 /* there is only one available link. */ ;
5 LoopAvoidance(), Return NULL;

6 pktdst.out_link ←
argminn∈to_adjacent_nodesdistance(n, dst);

7 Return all pktdst.out_link.
Src
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(a) Basic Routing (b) Switch to Protection Routing (c) Loop Avoidance

Fig. 4: Protection routing deals with unexpected failures.

demand with the same source destination pair in the same slot.
For example, two traffic demands f1ab and f2ab with the same
source-destination pair can be merged in a single demand from
a to b, in which the traffic size is the sum of f1ab and f2ab.

2) STARCURE’s protection routing strategy: Note that the
basic routing requires knowing the traffic matrix F̂ to solve
the P2. If an unexpected failure occurs, the TSM adds a new
burst traffic demand in F̂, and the basic routing has to re-
compute new routing decisions. During such a re-computation
period, STARCURE switches to a location-guided protection
routing (LGPR) to accomplish fast local recovery and switches
back to the basic routing once its re-computation completes.
Algorithm details. LGPR leverages the unique mesh-like
topology of STINs to calculate the position of each vertex
in the network and guide packet forwarding. Each satellite
vertex can be uniquely described by its relative location in
the constellation topology, via an orbit index (p) and intra-
orbit (q) satellite index. For example, a location index (p, q)
indicates the qth satellite in the pth orbit. Because satellites in
the same shell have the same altitude, their relative positions
are stable in failure-free scenarios. For each satellite router, if it
knows the destination location, it can estimate the path distance
from the current vertex to the destination. In other words, a
satellite router with a certain number of ISLs can estimate
which adjacent ISL connects to a vertex closer to the destination.
Algorithm 3 shows the details of LGPR for failure protection.
For each packet received, LGPR calculates its outgoing link to
the next adjacent node that is closer to the destination (line 6).
Note that LGPR returns NULL if there is only one available
link, i.e., the ingress of the packet in current satellite (line
3-5). Figure 4 plots an example illustrating how STARCURE
deals with failures. Assume there is a basic routing from Src
to Dst as shown in Figure 4(a). An unexpected failure occurs
in link (S12, S22). When packets arrive at S22 (i.e., the second

On-Board Computer
(Raspberry Pi 4)

Large-Scale Simulator
(DELL R730 Clusters)

STIN Traffic 
Interactions

… …

A number of 
simulated satellite 

nodes

A real hardware 
node

＋

Fig. 5: Our STIN testbed combines a real hardware and a
simulator to collaboratively build the experiment environment.

satellite in orbit 2), because S22 knows the relative location of
other satellites and S23 is more close to the destination, then
S22 forwards packets to S23, not S21, as shown in Figure 4(b).
Loop avoidance. Since LGPR uses constellation-wide location
information together with local link state, in certain scenarios it
may suffer from forwarding loops. For example, in Figure 4(c),
if link (S13, S23) also fails, S23 becomes a “dead end” with
only one available link. In this situation, if S22 forwards packets
to S23, it suffers from a loop on (S22, S23), since S23 has only
one available link. We design a local assessment strategy in
each satellite router. If a satellite has only one available link, it
temporally disables this link to avoid dead end in the network.
For example, in Figure 4(c) S23 notifies S22 that it has only
one available link. In this situation, S22 should not forward
packets to S23. Instead, it reroutes packets to S21 and finally
to the destination as plotted in Figure 4.

V. IMPLEMENTATION

We implement a STARCURE prototype on Linux, together
with a hardware-in-the-loop STIN experimental environment
that can simulate large scale constellations, load realistic
network protocols and traffic.
Prototype. The control plane of STARCURE’s basic routing
strategy, which pre-computes routing decisions for predictable
failures is implemented based on Gurobi [28]. Once decisions
have been made, the control plane leverages Linux route
to update routing tables in the data plane. The protection
routing strategy calculates distance to destination of each
adjacent node via Geopy [29]. To inform routers which routing
strategy should be used, we add a one-bit protection flag
in IPv6 Hop-by-Hop extension header [30]. A satellite router
forwards packets by basic routing if this flag is false, and by
protection routing when this flag is true.
STIN testbed. We implement a hardware-in-the-loop STIN
testbed as depicted in Figure 5 which integrates: (i) a container-
based STIN simulator that allows us to simulate large-scale
STINs and load realistic routing software as well as network
traffic; and (ii) a real Raspberry Pi 4 computer which has
been tested in a real space environment [31], and thus allows
us to evaluate real system overhead of routing software.
Specifically, we build our simulator based on a number of
inter-connected Mininet [32] nodes, and each node simulates
a satellite or ground station. We use orbit analysis tools [33] to
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calculate inter-visibility and time-varying geo-locations of each
node based on their public orbital information collected from
CeleTrak [34]. The simulator is implemented and deployed
on a cluster with three DELL-R730 PowerEdge servers. Each
server has two Intel four-core 3.6GHz processors and 256G
DDR4 RAM, running Ubuntu 20.04 and Mininet 2.3 software.

VI. PERFORMANCE EVALUATION

A. Experiment Setup

Constellation setting. Our evaluations are conducted based
on the public details of two state-of-art satellite Internet
constellations, SpaceX’s Starlink [1] and Amazon Project
Kuiper [2]. Starlink is currently the largest commercial LEO
constellation under heavy deployment. In our STIN testbed, we
simulate the complete Starlink first shell with 1584 satellites
in 72 orbits at 550km altitude as the space backbone, together
with SpaceX’s ground stations obtained from [35]. Similarly,
we simulate Amazon Project Kuiper together with its ground
facilities, i.e., AWS ground stations [36]. We set the link
capacity following a previous study [37] and FCC fillings [1].
Traffic pattern. We generate the traffic demand matrices
following the population-based methodology proposed in [38].
The traffic matrices in our experiment describe the traffic
demands between the populous cites [39] covered by STIN’s
ground stations. The traffic volume of each demand is scaled
in proportion to the population products of the city pairs.
Comparison. We also evaluate other representative resilience
solutions for comparison: (i) OSPF [24], as one of the most
widely deployed routing protocols in today’s terrestrial Internet;
(ii) Failure-Carrying Packets (FCP) [10], which uses the packet
header to gather and carry the list of failed links required
for routing that packet. Each packet carries the information
of encountered link failures, and routers re-compute a new
forwarding path on receiving that failure-carrying packet; (iii)
Source-Controlled Resilient Routing (SCRR). A recent work [3]
proposed to exploit source-controlled routing in STINs, and
SlickPackets [15] is a source-controlled re-routing solution that
allows packets to slip around failure by specifying alternate
paths in their headers in the source controller. We thus combine
these two works to build a SCRR solution; (iv) OrbitCast [18],
a recent geographical location-based routing approach which
forwards packets purely based on local location information
and is convergence-free under any types of failures.

B. Network Reachability

Figure 6 plots the network reachability of different solutions,
under various failures. “PF only” here indicates that the network
only contains predictable failures caused by periodical LEO
dynamics. UF indicates unexpected failures occur randomly
according to a certain proportion. For example, 10% UF refers
that about 10% of links in the STIN suffer from an unexpected
outright failure. The network reachability is calculated as the
ratio of the duration when routes are reachable, to the running
time of the experiment. In addition, Table I shows the routing
restoration time of each solution for different failure types.
Collectively, we make several observations. First, as expected,
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Fig. 6: Network reachability for different constellation topology
under various failures. PF: predictable failures. UF: unpre-
dictable failures for a portion of satellite links.

Failure
Scenario

OSPF
[24]

FCP
[10]

SCRR
[3], [15]

OrbitCast
[18]

STARCURE
(this paper)

Single PF 7.4s 1.4s 1.8s 1.3s 0.6s
10% UF 35.2s 17.4s 6.4s 1.2s 1.1s
15% UF 79.1s 21.2s 11.7s 1.2s 1.2s
30% UF 153.8s 29.4s 16.2s 1.2s 1.3s

TABLE I: Routing restoration time for various failures.

OSPF which detects failures and performs routing restoration
in a reactive manner suffers from long restoration delay. Since
failures are common and frequent in a STIN environment, the
network reachability of OSPF is only about 55% on average.
FCP and SCRR achieve about 80-90% network reachability on
average under different scenarios, which is much higher than
OSPF. This is because they do not broadcast failure information
globally to advertise all other routers to re-compute the routing
tables. Instead, they pack the failure information into the packet
header, and only these routers in the affected paths identify the
failures and re-calculate the route, eliminating the network-wide
reconvergence to improve reachability. However, since both
FCP and SCRR still need to re-compute new routes after the
failure and transit failures frequently occur, FCP and SCRR fail
to accomplish 100% reachability due to the endless online re-
computation process. Third, we observe that OrbitCast achieves
100% reachability when there are predictable failures only or
with a small fraction of unexpected failures, but its reachability
decreases as the failure rate increases. This is because OrbitCast
routes packets based on local information together with the
geo-location of the destination, and it can not avoid routing
loops when the high failure rate results in dead ends in the
network topology. Finally, STARCURE achieves close-to-100%
network reachability, by exploiting the adaptive hybrid routing
scheme under various failure scenarios and under different
constellation topologies.

C. Latency Comparison

Figure 7 plots the one-way path latency of those new
valid routes recovered from certain failures. We observe that
the path latency increases as the failure rate increases. This
is because when many links fail, packets have to travel a
long distance to find another valid path to the destination.
Specifically, OSPF and SCRR exploit the Dijkstra algorithm to
find the shortest path in the network, but suffer from frequent
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Fig. 7: Latency comparison for different resilience solutions.
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Fig. 8: Throughput comparison for different resilience solutions.

re-calculations and limited network reachability. FCP attains
higher latency because it calculates the shortest path based on
current incomplete graph information, until the packets have
traversed all failures. As a result, FCP has to re-compute the
shortest path for several times for multiple link failures, and
suffers from meandering routes. STARCURE achieves similar
latency results compared to OrbitCast, and achieves near-to-
optimal latency while maintaining high network reachability.

D. Constellation Throughput

To understand how the achievable throughput changes after
routing restoration, for each scenario when the STIN has
recovered from unexpected failures, we enlarge the traffic
demand, until the maximum link utilization in the network
reaches 100%. Then we calculate the sum of all traffic demands
as the achievable constellation-wide throughput. Figure 8 plots
the constellation-wide throughput after failure restoration under
different resilience solutions. We observe that as the failure rate
increases and more links become unavailable, the throughput of
each solution decreases because the amount of valid path that
can carry traffic demands decreases. OSPF, FCP, SCRR and
OrbitCast achieve about 100-200Gbps throughput under various
failures, as they reroute traffic on the shortest path, resulting
in high link utilization in these paths. STARCURE is more
flexible in dealing with failures and re-routing traffic under
various failures, and it accomplishes up to 197% throughput
improvement as compared to other four solutions.

E. System-level Overhead

Figure 9 plots the average CPU usage on the Raspberry Pi
4 computer in our hardware-in-the-loop experimentation which
runs different resilient solutions under different failure scenarios.
We do not plot SCRR as its major computation overhead is

0

50

100

PF Only 10% UF 15% UF 30% UF

C
PU

 U
sa

g
e 

(%
)

OSPF FCP OrbitCast StarCure

Fig. 9: CPU consumption of different resilient solutions.

aggregated in the source controller, not in each satellite router.
OrbitCast requires the highest usage as it performs routing
calculation for each packet. As compared to other solutions,
STARCURE accomplishes acceptable computation overhead.

VII. RELATED WORK
Routing in STINs. The network community has many prior
efforts focusing on satellite routing [40], [41], [42], [43], [44],
[14], [3], [45], [46], [47]. Authors in [44] proposed a multi-
tier space routing mechanism in a hybrid constellation with
LEO and geostationary satellites. DEEPER [42] is an efficient
transmission approach based on dynamical cooperation among
satellite and ground networks. All these efforts acknowledge
the low-latency, high-throughput capability of STINs, but most
of them do not consider how to deal with various failures in the
complex space environment. OPSPF [14] is a routing protocol
for satellite networks that leverages satellite prediction to resist
failures by periodically pre-computing routing tables. However,
OPSPF is designed dedicated to polar orbit constellations.
STARCURE addresses the limitation of existing space routing
mechanisms and achieves resilient and performance-guaranteed
routing in STINs under various failure scenarios.
Routing under various traffic demands. To deal with high
dynamics of Internet traffic, previous works have proposed
robust traffic engineering that works well under highly variable
traffic [48], [49]. Some solutions of them maintain a history
of observed traffic demand matrices, and optimize for the
representative traffic demand matrices. Other solutions are
oblivious routing [50], [51], [52], aiming at optimizing the
worst-case performance over all possible traffic demands. These
works complement our study in this paper, as they focus on
traffic variability but do not consider topology variability due
to various network failures.

VIII. CONCLUSION AND ACKNOWLEDGMENT

This paper presents STARCURE, a resilient and performance-
guaranteed routing mechanism for emerging STINs. STAR-
CURE incorporates a new network model, called topology-
stabilizing model (TSM) to convert the frequent topology
fluctuations to traffic fluctuation upon a logically stable
topology. Then, STARCURE adopts a hybrid routing algorithm
that efficiently tackle large-scale time-varying traffic in STINs.
Our extensive evaluations demonstrate that compared to existing
resilience solutions, STARCURE can accomplish close-to-100%
reachability and better performance restoration.

We thank all INFOCOM reviewers for their feedback which
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National Key R&D Program of China (No. 2022YFB3105202),
National Natural Science Foundation of China (NSFC No.
62132004) and Tsinghua University-China Telecom Joint
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