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In this document, we provide proofs for the theoretical results in the paper [1].

We reiterate the notations (Table 2 in the full paper) for the ease of referring them in the proofs here.

Table 1. Notations

Ci Carrier i , i ∈ [1,N ]

RATj Radio access technology j (e.g. 3G, 4G)

ck/cki Cell k (in carrier Ci )
Pi, j/Pi Inter-carrier preference on carrier Ci ’s RATj / Ci
p(ci ) Intra-carrier priority of cell ci

M,M(Ci ) MeasureM (on Ci ) for inter-carrier policy
Q,q(c j ) Measure Q (on c j ) for intra-carrier policy
δ ,θ ,ϕ Different inter-carrier thresholds (on carrier)

∆i ,Threshi, j Different intra-carrier thresholds (on ci /c j )

A PROOFS OF THEOREMS FOR PREFERENCE-BASED POLICY

A.1 Proof of Proposition 1

Proof. Following the static condition assumption, neither inter-carrier policy nor intra-carrier policy

changes. Therefore the decision will be the same under deterministic policy, and loop is persistent by

definition. □
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A.2 Proof of Lemma 1

Proof. (Sufficiency⇒) The sequence (∗) C1 7→ C2 7→ · · · 7→ CN 7→ C1 by definition is an N -carrier

loop.

(Necessity ⇐) We show in three steps that, if an inter-carrier switching sequence contains an N -

carrier loop, then it contains the sequence (∗) C1 7→ C2 7→ · · · 7→ CN 7→ C1. Suppose the phone initially

connects to carrier C0’s RAT0. We denote the highest preference (carrier, RAT) combination in carrier Ci as

P imax = maxj Pi, j .

Step 1. We show that under any initial condition (C0 that phone is connected to), the device will be served

by C1 after finite switching steps. We prove it by cases. If C0 = C1, then the conclusion holds. If C0 , C1,

then an inter-carrier switching C0 7→ C1 occurs. This is because P
1

max ≥ P0

max ≥ P0,0 and C1 is the carrier

with the smallest index. According to Policy 1, such switch will happen. Therefore, the device will always

be served by C1 initially or after finite steps.

Step 2. The inter-carrier switching fromC1 7→ C2 must occur, given that an N -carrier loop exists. We can

prove it by contradiction: IfC1 7→ C2 does not happen, there are two possibilities: either (a) the inter-carrier

logic decides to not switch at C1, or that (b) C1 7→ Ci , i , 2 occurs. For case (a), the conditions are that

(1) C1 has the highest preference and (2) C1 is available. Such case does not hold, because though the first

condition (C1 has the highest preference) holds by assumption, the second condition does not hold. If it is

true, then there is no other possibilities nor reason to switch out from C1, therefore the N -carrier loop will

not exist. For case (b), this does not hold because P1

max ≥ P2

max ≥ P jmax , j ∈ [3,N ]. Therefore if a switching

out from C1 happens, it will switch to C2 according to Policy 1, not any other carrier Ci , i , 2. Therefore, it

must be the case that the inter-carrier switching C1 7→ C2 happens.

Step 3. Similar to the above proof, subsequent inter-carrier switchings C2 7→ C3,C3 7→ C4, . . . ,CN 7→ C1

must occur in order and no other switching sequences may occur, otherwise the inter-carrier switching

sequence will stop at any of the carriers C3,C4, . . . ,CN but no N -carrier loop exists. □

A.3 Proof of Theorem 6.1

Proof. (Sufficiency ⇒) Suppose both conditions satisfy. Without loss of generality, suppose RAT1

is RATH and RAT2 is RATL . This further implies: (i) for the condition (a) stated in Theorem 6.1, Pmax =

P imax = Pi,1 ≥ Pi, j ,∀i ∈ [1,N ],∀j ∈ [3,N ], and that RAT2’s preference is always lower than RAT1:

Pi,2 < Pi,1,∀i ∈ [1,N ]. (ii) for the condition (b), the intra-carrier logic in every carrier will prefer RAT2:

as long as the phone is not connected to RAT2, intra-carrier logic will move phone to RAT2. We next

constructively prove that the inter-carrier switching sequence (∗) occurs.

Step 1. Starting from C0 and RAT0 initially, we show that phone will be connected to C1 initially or in

finite steps. If C0 = C1 then it is true already; otherwise, suppose C0 , C1 and there are two subcases: (case

1) if RAT0 , RAT1: according to Policy 1, since P0,0 ≤ P0

max = P1

max = P1,1, the inter-carrier switching will

select C1.RAT1 and the phone will connect to C1; (case 2) if RAT0 = RAT1: according to intra-carrier policy,
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phone will be reselected to RAT2. Next, inter-carrier policy will select C1.RAT1 and switch to C1, due to the

same reason as (case 1).

Step 2. We show that the inter-carrier switchings Ci 7→ Ci+1,∀i ∈ [1,N − 1] occur. We prove it by

induction.

(Base case) First, the switching C1 7→ C2 will occur. After Step 1, phone is connected to C1. Following

condition (b), C1’s intra-carrier policy moves the phone from RAT1 to RAT2. However, since Pmax = P2,1 >

P1,2 and that C2 is unselected carrier, phone will switch to C2 according to Policy 1. Moreover, C1 will not

switch to C3,C4, . . . ,CN , because that all these carriers have larger index than C2.

(Inductive step) Next, suppose that it is true for k,k ∈ [2,N − 2] (which means that Ck 7→ Ck+1 occurs),

we show that it is true for k + 1. Since Ck 7→ Ck+1 occurs, it means two things: (a) Inter-carrier logic

choosesCk .RAT1 according to Policy 1; (b)C1,C2, . . . ,Ck have been selected, whileCk+1,Ck+2, . . . have not

been selected. Given condition (b), intra-carrier logic at Ck+1 moves to RAT2. Since Pmax = Pk+2,1 > Pk+1,2,

inter-carrier logic will perform switch. The switch target is Ck+2, because C1, . . . ,Ck+1 have been selected

so thatCk+2 is the highest preference carrier which has not been selected, and has the smallest index among

all possible carriers. Together, Ci 7→ Ci+1,∀i ∈ [1,N − 1] occur.

Step 3. We show that the inter-carrier switching CN 7→ C1 occurs. Following Steps 1 and 2, we have

selected all carriers with highest preference: Ci ,∀i ∈ [1,N ]. Therefore, when the phone connects to CN , all

carriers are marked “unselected” again following Policy 1. WhenCN ’s intra-carrier logic moves phone from

CN .RAT1 to CN .RAT2, an inter-carrier switching happens because Pmax = P1,1 = PN ,1 > PN ,2. Therefore, it

will select C1.RAT1, since it has the highest preference and C1 is not selected and has the smallest index.

Together, with Steps 1, 2 and 3, we prove that the sufficient condition will lead to the inter-carrier

switching sequence (∗) C1 7→ C2 7→ · · · 7→ CN 7→ C1. With the Lemma 1, the N -carrier loop occurs.

(Necessity ⇐) We prove via contrapositive. The original statement is: if N -carrier loop happens, then

both two conditions holds. We prove the contrapositive statement: if one of the conditions does not hold,

N -carrier loop will not happen.

First, assume the condition (a) does not hold. We are proving: if some carriers have no RAT assigned

with highest preference Pmax , then no N -carrier loop may happen. It is easy to prove, because the carrier

with no RAT assigned with highest preference will not get selected by inter-carrier Policy 1. Under this

case, a k-carrier loop (1 < k < N ) may happen, but not the N -carrier loop.

Second, assume the condition (b) does not hold. We are proving: if in some carriers, phone can stay in

the RATH due to intra-carrier policy, then no N -carrier loop may happen. This is evident. When the phone

stays in RATH , it satisfies both inter-carrier and intra-carrier preference. Hence, the inter-carrier switching

will stop.

Therefore, we have prove that the necessary condition of N -carrier loop. Together, the conditions (a) and

(b) are necessary and sufficient conditions for N -carrier loop. □
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A.4 Proof of Theorem 6.2

Proof. (Sufficiency⇒) Wewill show that under such sufficient condition, N -carrier loop will happen.

We prove it in three main steps.

Step 1. Similar to the proof in Lemma 1 and Theorem 6.1, under any initial condition (C0 that phone is

connected to), the device will be served by C1 in finite steps. Therefore, we will always begin from C1.

Step 2. We show that the inter-carrier switchesCi 7→ Ci+1,∀i ∈ [1,N − 1] occur. We prove it by induction.

(Base case) First, the switching C1 7→ C2 will occur. Similar to the proof of Step 2 for Lemma 1 and

Theorem 6.1: first, C1 will switch because C1’s intra-carrier logic will lead to an unavailable cell; second, C1

will switch to C2, but not C3, . . . ,CN .

(Inductive step) Next, assume that it is true for k,k ∈ [2,N − 2] (which means that Ck 7→ Ck+1 occurs),

we show that it is true for k + 1. Since Ck 7→ Ck+1 occurs, it means two conditions: (a) Ck is unavailable,

which is assumed by the sufficient condition. (b) C1,C2, . . . ,Ck−1 have been selected, therefore Ck+1 is the

highest preference carrier which has not been selected, and has the smallest index among all possible same

preference carriers.

Therefore, given that Ck+1 is also unavailable by intra-carrier logic, inter-carrier will perform switching.

The switching target is Ck+2, because C1,C2, . . . ,Ck−1,Ck have been selected so that Ck+2 is the highest

preference carrier which has not been selected, and has the smallest index among all possible same preference

carriers. Together, it proves that Ci 7→ Ci+1,∀i ∈ [1,N − 1] occur.

Step 3. We show that the inter-carrier switching CN 7→ C1 occurs. As CN is unavailable assumed by the

sufficient condition, it needs to perform inter-carrier switching. Following Steps 1 and 2, we have connected

from all carriers Ci ,∀i ∈ [1,N ]. Therefore, all carriers are marked ‘unselected’ again following Policy 2.

Therefore, it will select C1, since P1 is the highest preference and C1 is not selected and has the smallest

index.

Together, with Steps 1, 2 and 3, we prove that the sufficient condition will lead to an inter-carrier switching

sequence (∗) C1 7→ C2 7→ · · · 7→ CN 7→ C1. With the Lemma 1, the N -carrier loop occurs.

(Necessity⇐) We prove by contrapositive. The original statement is: if N -carrier loop happens, then the

necessary condition holds. Therefore we prove the contrapositive statement: if such necessary condition

does not hold, N -carrier loop will not happen.

If the necessary condition does not hold, it means that at least one carrier Ci ,∃i ∈ [1,N ] will not move

the device to an unavailable cell, so that the device has service in carrier Ci . Without loss of generality, i is

the first carrier that will not move the device to an unavailable cell.

Step 1. We first show the inter-carrier switching sequence (∗)C1 7→ C2 7→ · · · 7→ CN 7→ C1 will not occur

under this condition. Following the similar proof to the Lemma 1, it holds. The reason is that inter-carrier

switching sequence C1 7→ · · · 7→ Ci ,∃i ∈ [1,N ] will happen, but inter-carrier switching will stop at carrier

Ci . The assumption states that Ci is available while all carriers C1, . . . ,Ci−1 whose preference higher or

equal to Ci ’s are unavailable. Following Policy 2, all carriers C1, . . . ,Ci−1 would have been selected when
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the serving carrier is Ci . Therefore, the highest preference among unselected carriers will be Pi+1 ≤ Pi .

Since Ci is available, Policy 2 will decide that staying in Ci (i ≤ N ), so that the inter-carrier switching

sequence (∗) C1 7→ C2 7→ · · · 7→ CN 7→ C1 does not happen.

Step 2. Following the Lemma 1, since the inter-carrier switching sequence (∗)C1 7→ C2 7→ · · · 7→ CN 7→ C1

does not occur, no N -carrier loop will happen. □

A.5 Proof of Corollary 2

Proof. Due to the similarity of the proof to that of Theorem 6.1, we show a proof sketch here.

(Sufficiency⇒) Construct the sequence (∗) using both conditions. Without loss of generality, suppose

RAT1 is RATH . Further assume that the RAT2 (RATL in Theorem 6.1) has the highest intra-carrier priority

in all carriers. Step 1, C1 is chosen initially or after finite steps, same reasoning as in Theorem 6.1. Step 2,

Ci 7→ Ci+1,∀i ∈ [1,N − 1] occur. Prove it by induction. The key is, intra-carrier policy always select to Ci ’s

RAT2 by Assumption 1 because highest priority RAT2 is guaranteed to be selected, so Ci 7→ Ci+1 happens

following condition (a) and Policy 1. Step 3, CN 7→ C1 occurs because all carriers are marked ‘unselected’

again following Policy 1. By Lemma 1, an N -carrier loop happens since the sequence (∗) occurs.

(Necessity⇐) We prove via contrapositive. First, negate condition (a): if some carriers have no RATH

assigned with highest preference, then no N -carrier loop. It holds because such carrier does not have highest

preference, and will not be selected by Policy 1. Second, negate condition (b): if at least in one carrier, most

preferred RAT is the same for inter-carrier and intra-carrier policy, then no N -carrier loop. It is true because

the inter-carrier policy will not further move away, hence it stops. Under both negations, a k-carrier loop

(1 < k < N ) may happen, but not the N -carrier loop. □

B PROOFS OF THEOREMS FOR THRESHOLD-BASED POLICY

Without loss of generality, we assume M(C1) ≥ M(C2) ≥ · · · ≥ M(CN ). Given the problem setting and

policy, we have the following Lemma regarding the inter-carrier switching loop.

Lemma B.1. If threshold-policy incurs a k-carrier loop (2 ≤ k ≤ N ), then it must be C1 7→ C2 7→ · · · 7→

Ck 7→ C1.

B.1 Proof of Theorem 7.1

Proof. Assume inter-carrier policy takes Criterion F1 with threshold θ , we prove loop will occur. Based

on our problem setting, the threshold must be a reasonable value such that there is chance for any carrier’s

measure to be greater than the threshold. Therefore, consider all N carriers have measure greater than

threshold, θ . Without the loss of generality, assume M(C1) ≥ M(C2) ≥ · · · ≥ M(CN ) > θ . Since M(Ci ) >

θ (∀i ∈ [1,N ]) is satisfied for all carriers at the same time, the phone will keep switching among those

carriers. □
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B.2 Proof of Theorem 7.2

Proof. We prove this theory for Criteria F2–F4 respectively.

F2. (Sufficiency⇒) Here the measure of the carrier cannot always satisfyM(Cj ) −Mmin(Cj ) ≤ ϕ − θ ,

then we prove the inter-carrier policy cannot be loop-free. Consider only top-k carriers have the measure

M no less than threshold ϕ, i.e. C1,C2, · · · ,Ck and M(C1) ≥ M(C2) ≥ · · · ≥ M(Ck ) ≥ ϕ. In addition, each

top-k carrier Cj (1 ≤ j ≤ k) hasMmin(Cj ) < θ , which is possible becauseM(Cj ) −Mmin(Cj ) ≤ ϕ − θ is not

always guaranteed. Since the intra-carrier policy is based on a different measureQ independent ofM , in any

carrier Cj (1 ≤ j ≤ k), the phone could be moved to that cell with measure less than θ . Initially, assume the

phone is connected to a carrier C1. Then, based on the inter-carrier switching mechanism and intra-carrier

handoff, switchings Ci 7→ Ci+1, i ∈ [1,k) and Ck 7→ C1 would happen sequentially. By now, a switching

loop is formed in static case.

(Necessity ⇐) By setting the measure of any carrier equal to the lowest measure among all its cells,

we prove loop-freedom is guaranteed. Once the switching Ci 7→ Cj occurs, then there must beM(Cj ) ≥ ϕ.

GivenM(Cj ) −Mmin(Cj ) ≤ ϕ − θ , no matter which cell the intra-carrier handoff leads to, the cell’s measure

must be no less than Mmin(Cj ) ≥ M(Cj ) + ϕ − θ ≥ θ . As a result, as long as a carrier is selected as the

switching target and the phone switches to that carrier, then the phone will not trigger any switching.

Loop-freedom is achieved here.

F3, F4. Similar to the proof above.

(Sufficiency⇒) SinceM(Cj )−M
min(Cj ) > δ is possible for any carrier, we assume there are two carriers

C1,C2 which satisfy this condition. When the phone stays on C1 or C2, intra-carrier handoff will move the

phone to the cell with the lowest measure less than θ . In addition, assumeM(C1) = M(C2) and other carriers

are unavailable. Under this condition, loop will happen between C1 and C2 when either F3 or F4 is used.

(Necessity ⇐) Consider k-carrier loop C1 7→ C2 7→ · · · 7→ Ck 7→ C1 occurs. According to Lemma B.1,

we haveM(C1) ≥ M(C2) ≥ · · · ≥ M(Ck ). Then we haveM(C1) ≥ M(C2) > Mmin(C1) + δ . □

B.3 Proof of Theorem 7.3

Proof. We consider F2 and F4 separately.

F2. We prove loop-freedom is guaranteed if all conditions in Theorem 7.3 are violated. We first prove

that, if carrier switching Cj0 7→ Cj occurs, then the phone would not switch out of Cj in static case. Given

Ci 7→ Cj , we get M(Cj ) ≥ ϕ. After switching to Cj , the phone initially camps on the cell cu0j with the

maximum measure among all cells in Cj , so we have M(cu0j ) ≥ M(Cj ) ≥ ϕ. Finally, the phone is stably

connected to cell culj . So there exists a cell handoff path cu0
2

→ cu1
2

→ · · · → cul
2

indicating a sequence of

cells selected by intra-carrier policy, from the initial cell cu0j till the terminate culj . Note that handoff may

not happen, and l is possibly equal to 0. GivenM(cu0j ) ≥ ϕ, we prove any cell in the cell path has measure

no less than θ if conditions regarding F2 in Theorem 7.3 are violated by Cj .
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We prove this by induction. The hypothesis is, for all ∀k ∈ (0, l], if any cuij (0 ≤ i < k) has M(cuij ) ≥ θ

thenM(cukj ) ≥ θ . We have the following cases.

(a) k = 0. We haveM(cu0j ) ≥ ϕ ≥ θ .

(b) k = 1. If handoff cu0j → cu1j takes criteria of absolute-value comparison or indirect comparison, then we

haveM(cu1j > Thresh1
0,1
j ) orM(cu1j > Thresh3

0,1
j ). In both cases,M(cu1j ) > θ .

(c) k ≥ 2. Suppose for any 0 ≤ i < k , M(cuij ) > θ holds. If handoff cuk−1j → cukj takes criteria of either

absolute-value comparison or indirect comparison, then we have M(cukj ) similar to case (b). Otherwise,

handoff cuk−1j → cukj takes criteria of direct comparison. Analyze the following different cases based on

which handoff criteria is used by cuk−2j → cuk−1j :

(i) It takes either criteria of absolute-value comparison or indirect comparison, then we haveM(cukj >

Thresh1k−2,k−1j + ∆k−1
j ) orM(cukj > Thresh3

k−2,k−1
j + ∆k−1

j ). In both cases,M(cukj ) > θ .

(ii) It takes either criteria of direct comparison. In this case,M(cukj ) > M(cuk−2j ) + ∆k−2
j + ∆k−1

j . Since

intra-policy is assumed loop-free here, we know ∆k−2
j + ∆k−1

j ≥ 0 based on the results by Li, et

al [2]. So we haveM(cukj ) > M(cuk−2j ) ≥ θ .

By now, we prove that every cell cuij ) in the sequence has M(cuij ) ≥ θ . Therefore, we have M(culj ) ≥ θ so

the phone will not switch out of carrierCj . Since any switching will lead the phone to stay on a new carrier

without any more switch, loop would not occur.

F4. We prove this by contradiction.

Assume conditions in Theorem 7.3 are violated and there exists a k-carrier loop. According to Lemma B.1,

the loop is C1 7→ C2 7→ · · · 7→ Ck 7→ C1. Within carrier C1, assume the handoff sequence is cu0
1

→ cu1
1

→

· · · → cul
1
, l ≥ 0. cu0

1
is the initial cell withM(cu0

1
) ≥ M(C1). Moreover, if handoff happens (l > 0), then the

last handoff must be based on the criterion of direct comparison. Otherwise, the phone ends up with a cell

whose measure is no less than θ and it will not switch out.

Next, we do case analysis on the length of handoff path.

(a) l = 0. In this case, we haveM(C2) ≤ M(C1) ≤ M(cu0
1
). Then the phone will not switch out, so this case

is impossible.

(b) l = 1. In this case, we know handoff cu0
1

→ cu1
1

is based on direct comparison. Then, M(cu1
1
) + δ >

M(cu0
1
) + ∆u0 + δ ≥ M(cu0

1
) ≥ M(C1) ≥ M(C2) shows the phone will not switch out either because the

criterion is not satisfied.

(c) l ≥ 2. In the handoff sequence, assume cui
1

is the first cell after which all handoffs are based on direct
comparison criterion. Based on previous analysis, we know i ≤ l − 1.

Here, if i = l − 1 then handoff cul−2
1

→ cul−1
1

is either based on absolute-value comparison or indi-
rect comparison, so we have M(cui

1
) > θ . In this case, we get either M(cul

1
) > M(cul−1

1
) + ∆ul−1

1
>

Thresh1ul−2,ul−1
1

+ ∆ul−1
1

≥ θ orM(cul
1
) > M(cul−1

1
) + ∆ul−1

1
> Thresh3ul−2,ul−1

1
+ ∆ul−1

1
≥ θ . Both indicate

the phone will not switch out of carrier C1.
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So we only have one case left, that is i ≤ l − 2. In this case, M(cul
1
) > M(cui

1
) +

l−1∑
x=i

∆ux
1
. Since intra-

carrier handoff is assumed loop-free here, and based on the results by Li, et al [2], we have

l−1∑
x=i

∆ux
1

≥ 0.

Therefore,M(c1)
ul > M(c1)

ui
. Now we know either i = 0 or not,M(c1)

ul > M(c1)
ui ≥ min{θ ,M(cu0

1
)}.

Again, the phone will not switch out. Contradiction.

□

B.4 Proof of Theorem 7.4

Proof. Assume the switching loop is C1 7→ C2 7→ · · ·Ck ,k ∈ [2,N ]. We have M(C1) ≥ M(C2) ≥ · · · ≥

M(Ck ). Then, we prove C1 satisfies the condition in theorem by contradiction. If C1 violates the condition,

then we show C1 7→ C2 would not happen after Ck 7→ C1. The phone switches to C1, and initially camps

on cell cu0
1
. Based on intra-carrier cell selection policy, the initial cell cu0

1
has the highest measure among

all cells in C1. Then intra-carrier handoff may happen and finally move the cell to cell cul
1
. Next we prove

M(cu0
1
) ≤ M(cul

1
) + δ . (1) If cu

1
and cu0

1
are the same cell, then the condition holds. (2) Otherwise, there

is a handoff sequence cu0
1

→ cu1
1

→ · · · cul
1
. Each handoff in the sequence is based on criterion of direct

comparison or indirect comparison. Then we use δ +
l−1∑
j=0

h(c
uj
1

→ c
uj+1
1

) ≥ 0 to proveM(cu0
1
) ≤ M(cul

1
) + δ .

Therefore, we have M(C2) ≤ M(C1) ≤ M(cu0
1
) ≤ M(cul

1
) + δ . That means the switching C1 7→ C2 will not

happen because Criterion F3 is not fulfilled. Now we get contradiction. □

C PROOFS OF THEOREMS FOR HYBRID POLICY

C.1 Proof of Theorem 8.1

Proof. Base on Theorem 7.1, if Criterion F1 is used for the switching Ci 7→ Cj and Cj 7→ Ci at the same

time, then loop will occur. As a result, if F1 is applied to switch between carriers with equal preference,

there will be loop. Similarly, if F1 is applied to both switching to higher preference or switching to lower

preference, loop will happen too. So far, we have proven combination (1) and (2) are loop-prone.

Next, suppose the switching to a higher preference carrier takes the Criterion F1 and the switching to a

lower preference carrier takes Criterion F3. Then we show loop could occur regardless of configuration of

threshold. Consider two carriers C1 and C2 with P1 > P2 and other carriers are unavailable at the current

location. Initially the phone stays on C2. When M(C1) ≥ θ , carrier switching C2 7→ C1 occurs. In carrier

C1, the phone is stably connected to cell cu
1
, while cell cv

1
has the maximum measure among all local cells.

WhenM(C2) > M(cv
1
) + δ , carrier switching C1 7→ C2 also occurs becauseM(C2) > M(cv

1
) + δ ≥ M(cu

1
) + δ .

In static case, the phone will keep switching back and forth between C1,C2, which forms loop.

Similarly, we can prove it is also loop-prone to apply F1 to switch to lower preference and F3 to switch to

higher preference. □
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D DYNAMIC POLICY UPDATES

D.1 Proof of Proposition 2

Proof. We prove for each type of update.

(1) Preference update. We prove for RAT-aware preference update here. RAT-oblivious preference

update is a special case for this proof.

Suppose the policy update is safe, then the inter-carrier preference values Pold given a fixed intra-carrier

policy before the update is loop-free by definition. According to Theorem 6.1, Pold and the given intra-carrier

policy must not satisfy both conditions at the same time: (a) every carrier has one or more RATs (denoted

RATH ) assigned with equal and highest preference; and (b) each carrier’s intra-carrier priority and threshold

result in reselection from RATH to a different RATL .

Since updating the inter-carrier preference to Pnew will not affect the given intra-carrier policy, condition

(b) is not affected in any case. When the top-preferred RATH is given a higher preference, condition (a) will

not be satisfied in any case, by enumeration. Therefore, after the update, two conditions still do not satisfy

at the same time, thus the loop will not incur by Theorem 6.1. It means that the loop-freedom is still ensured

after the policy update under Assumption 1.

(2) Threshold update. We prove the update rule is safe for Criterion F2 respectively. Proof for other
criteria is similar.

F2. Suppose the policy is loop-free before update. To update thresholds, we can only decrease θ or

increase ϕ or do both. Denote θ ′,ϕ ′
as new values, so we have θ ′ ≤ θ ,ϕ ′ ≥ ϕ. Next we prove that carrier

switching which does not happen before update will not happen afterwards either. Consider the phone

does not switch from Ci to Cj before. Denote c
u
i as the cell selected as the final serving cell by intra-policy.

So the switching criterion is not satisfied, either theM(cui ) ≥ θ orM(Cj ) < ϕ. Then, after threshold update,

we still haveM(cui ) ≥ θ ≥ θ ′ orM(Cj ) < ϕ ≤ ϕ ′
. Therefore, switching Ci 7→ Cj still cannot happen. Then

we know, if there exists no loop before threshold update, loop will not happen afterwards as long as the

update rule is followed. □

REFERENCES

[1] Zengwen Yuan, Qianru Li, Yuanjie Li, Songwu Lu, Chunyi Peng, and George Varghese. 2018. Resolving Policy Conflicts in

Multi-Carrier Cellular Access. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking

(MobiCom ’18). ACM, New York, NY, USA.

[2] Yuanjie Li, Haotian Deng, Jiayao Li, Chunyi Peng, and Songwu Lu. 2016. Instability in Distributed Mobility Management:

Revisiting Configuration Management in 3G/4G Mobile Networks. In Proceedings of the 2016 ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Science (SIGMETRICS ’16). ACM, New York, NY, USA, 261–272. DOI:

http://dx.doi.org/10.1145/2896377.2901457

http://dx.doi.org/10.1145/2896377.2901457

	Abstract
	A Proofs of Theorems for Preference-Based Policy
	A.1 Proof of Proposition 1
	A.2 Proof of Lemma 1
	A.3 Proof of Theorem 6.1
	A.4 Proof of Theorem 6.2
	A.5 Proof of Corollary 2

	B Proofs of Theorems for Threshold-Based Policy
	B.1 Proof of Theorem 7.1
	B.2 Proof of Theorem 7.2
	B.3 Proof of Theorem 7.3
	B.4 Proof of Theorem 7.4

	C Proofs of Theorems For Hybrid Policy
	C.1 Proof of Theorem 8.1

	D Dynamic Policy Updates
	D.1 Proof of Proposition 2

	References

